Display Elektronik GmbH

DATA SHEET

BCD MODULE

DEC 128064A BWH

2,7"
128x64 Bi-Stable
Cholesteric Display

Product Specification

Ver.: 6

10.05.2022

Revision Status

Version	Revise Date	Page	Content	Modified By
0	09.12.2015	-	First Issued	MH
1	01.02.2016	P4	Update General Description	MH
1.1.0	05.09.2018	-	General Update	MH
2	17.10.2018	P4 P5	Modify Display Type Modify Code Spray	MH
3	03.12.2018	P12 P5	Modify Optical Characteristics Modify Drawing	MHI
4	20.08.2021	4	Modify Sample NO.	
5	25.04.2022	4	Modify Sample NO.	
6	10.05.2022	18	Modify Packing instruction	
	1			

Table of Contents

No. Contents	Page
1. TECHNOLOGY DESCRIPTION	4
2. TYPICAL APPLICATIONS	4
3. GENERAL DESCRIPTION	4
4. MECHANICAL SPECIFICATIONS	4
5. INTERFACE SIGNALS	6
6. ABSOLUTE MAXIMUM RATINGS	8
7. ELECTRICAL SPECIFICATIONS	10
8. OPTICAL CHARACTERISTICS AT 25°C	15
9. LCD COSMETIC CONDITIONS	16
10 HANDLING PRECAUTION	17

1. Technology Description

BCD (Bi-stable Cholesteric Display) is a sunlight readable reflective LCD with extremely low power consumption characteristics. Due to the non-volatile memory feature of the technology, zero power is required to retain the image of the display. Energy is only required to change the displayed image. No backlighting is required, only ambient lighting from the surrounding is required. Readability when under direct sunlight is excellent and good contrast from viewing at very wide angles are possible.

2. Typical Applications

This module is intended for general purpose graphic and character display applications. Suggested uses include instrumentation, remote control, electronic product or price label, point of sale display, general purpose indoor or outdoor signage and information display.

3. General Description

The features of LCD are as follows

* Technology : Passive Matrix Bistable Cholesteric LCD Graphic Module

* Color : Blue & White

* Display Mode : BCD – Bistable Cholersterical LCD

* Driver/Controller IC : SSD1603 (Sitronix)

* Interface Input Data : 4-Wire SPI Interface

* Driving Scheme : Special BCD Driving Scheme

* Driving Method : 1/64 Duty, Static

* Viewing Direction : Full Viewing

* Backlight : Without

* Polarizer Mode : Reflective, without Polarizer

* Sample NO. : -

4. Mechanical Specifications

The mechanical detail is shown in Fig. 1 and summarized in Table 1 below.

Table 1

Item	Specification	Unit
Module Size	65.00 x 43.40 x 1.40	mm
Viewing Area	61.00 x 31.40	mm
Active Area	55.025 x 27.505	mm
Number of Dots	128 x 64 Dots	-
Dot Size	0.415 x 0.415	mm
Dot Pitch	0.43 x 0.43	mm

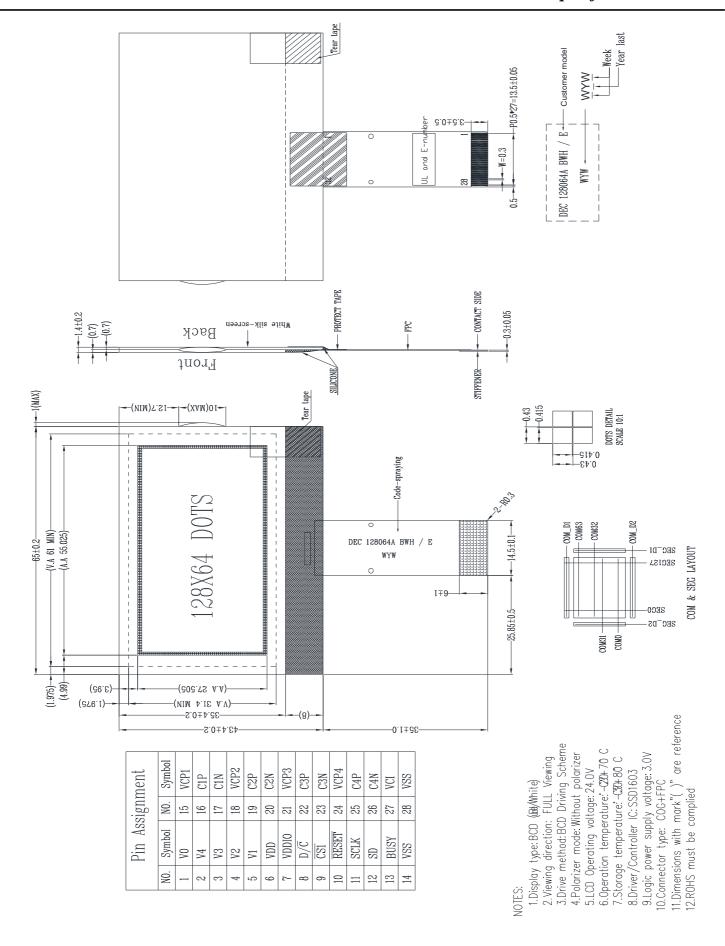


Figure 1: Module Specification

5. Interface Signals

Table 2

This pin is the system power supply pin of the logic block. Power supply for interface logic level. It should be match with the MCU interface voltage level. It must always be equal or lower than VDD. This pin is Data/Command control pin. A high at D/C indicates data input while a low at D/C indicates command input These pins are the chip select inputs for communication between MCU. To select the chip CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high.	PIN NO.	SYMBOL	FUNCTIONS
2 V4 Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to 1/N * V0, where N is equal to the Bias ratio Setting. Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to 2/N * V0, where N is equal to the Bias ratio Setting. 4 V2 Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to (N-1)/N * V0, where N is equal to the Bias ratio Setting. 5 V1 Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to (N-1)/N * V0, where N is equal to the Bias ratio Setting. 6 VDD This pin is the system power supply pin of the logic block. 7 VDDIO 8 D/C A high at D/C indicates data input while a low at D/C indicates command input These pins are the chip select inputs for communication between MCU. To select the chip CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. For serial mode is the serial data input (SDIN), D0 is the serial cloc input, (SCLK). 10 SD input, (SCLK). 11 In serial interface mode, D1 is the serial data input (SDIN), D0 is the serial cloc input, (SCLK). 12 CJC Output voltage. Connect with a capacitor to VSSC. It should be connected to V0. 13 DC/DC output voltage. Connect with a capacitor to VSSC. It should be connected to V0. 14 VCP2 DC/DC flying capacitor terminal. 15 CJC DC DC/DC interme	1	V0	
V3	2	V4	Panel driving voltage. If bias divider is enabled with the presence of V0.
4 V2 Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to (N-2)/N * V0, where N is equal to the Bias ratio Setting Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to (N-1)/N * V0, where N is equal to the Bias ratio Setting Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to (N-1)/N * V0, where N is equal to the Bias ratio Setting Panel driving voltage. It is not be logic block. 7 VDDIO Power supply for interface logic level. It should be match with the MCU interface voltage level. It must always be equal or lower than VDD. 8 D/C This pin is Data/Command control pin. A high at D/C indicates data input while a low at D/C indicates command input These pins are the chip select inputs for communication between MCU. To select the chip CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. This pin is the reset signal input. Initialization of the chip is started once this pin is pulled low. Minimum pulse width for reset sequence is 20us. 10 In serial interface mode, D1 is the serial data input (SDIN), D0 is the serial cloc input, (SCLK). 11 BUSY A high level indicates busy status (output driving waveform) of the driver. 12 SD Interface mode, D1 is the serial data input (SDIN), D0 is the serial cloc input, (SCLK). 13 BUSY A high level indicates busy status (output driving waveform) of the driver. 14 VSS Ground. 15 VCP1 DC/DC Output voltage. Connect with a capacitor to VSSC. It should be connected to V0. 16 C1P DC/DC flying capacitor terminal. 17 C1N Connect a capacitor between C1N and C1P. 18 VCP2 DC/DC flying capacitor terminal. 20 C2N Connect a capacitor between C2N and C2P. 21 VCP3 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC flying capacitor terminal. 25 C4P	3	V3	Panel driving voltage. If bias divider is enabled with the presence of V0.
Panel driving voltage. If bias divider is enabled with the presence of V0. The voltage is equal to (N-1)/N * V0, where N is equal to the Bias ratio Setting of the VDD This pin is the system power supply pin of the logic block.	4	V2	Panel driving voltage. If bias divider is enabled with the presence of V0.
7 VDDIO Power supply for interface logic level. It should be match with the MCU interface voltage level. It must always be equal or lower than VDD. 8 D/C This pin is Data/Command control pin. A high at D/C indicates data input while a low at D/C indicates command input These pins are the chip select inputs for communication between MCU. To select the chip CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. This pin is the reset signal input. Initialization of the chip is started once this pin is pulled low. Minimum pulse width for reset sequence is 20us. In serial interface mode, D1 is the serial data input (SDIN), D0 is the serial cloc input, (SCLK). BUSY A high level indicates busy status (output driving waveform) of the driver. VCP1 DC/DC output voltage. Connect with a capacitor to VSSC. It should be connected to V0. DC/DC flying capacitor terminal. CIN Connect a capacitor between C1N and C1P. DC/DC intermediate output voltage. Connect with a capacitor to VSSC. If using external mode with HV buffer enabled, it should be connected to V0. DC/DC flying capacitor terminal. Connect a capacitor between C2N and C2P. DC/DC flying capacitor terminal. Connect a capacitor between C3N and C3P. DC/DC flying capacitor terminal. Connect a capacitor between C3N and C3P. DC/DC flying capacitor terminal. Connect a capacitor between C3N and C3P. DC/DC flying capacitor terminal. Connect a capacitor between C3N and C3P. DC/DC flying capacitor terminal. Connect a capacitor between C4N and C4P. Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	5	V1	
Interface voltage level. It must always be equal or lower than VDD.	6	VDD	
This pin is Data/Command control pin. A high at D/C indicates data input while a low at D/C indicates command input These pins are the chip select inputs for communication between MCU. To select the chip CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. To select the chip CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and CS2 must set high. This pin is the reset signal input. Initialization of the chip is started once this pin is pulled low. Minimum pulse width for reset sequence is 20us. In serial interface mode, D1 is the serial data input (SDIN), D0 is the serial cloc input, (SCLK). BUSY A high level indicates busy status (output driving waveform) of the driver. VCP1 It should be connected to V0. DC/DC output voltage. Connect with a capacitor to VSSC. It should be connected to V0. DC/DC flying capacitor terminal. Connect a capacitor between C1N and C1P. DC/DC flying capacitor terminal. Connect a capacitor between C2N and C2P. DC/DC flying capacitor terminal. Connect a capacitor between C2N and C2P. DC/DC intermediate output voltage. Connect with a capacitor to VSSC. C3P DC/DC intermediate output voltage. Connect with a capacitor to VSSC. C4P DC/DC flying capacitor terminal. Connect a capacitor between C3N and C3P. DC/DC intermediate output voltage. Connect with a capacitor to VSSC. C4P DC/DC flying capacitor terminal. Connect a capacitor between C3N and C3P. DC/DC flying capacitor terminal. Connect a capacitor between C4N and C4P. Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	7	VDDIO	
These pins are the chip select inputs for communication between MCU. To select the chip CS1# must be low and CS2 must set high. RESET This pin is the reset signal input. Initialization of the chip is started once this pin is pulled low. Minimum pulse width for reset sequence is 20us. In serial interface mode, D1 is the serial data input (SDIN), D0 is the serial cloc input, (SCLK). BUSY A high level indicates busy status (output driving waveform) of the driver. A high level indicates busy status (output driving waveform) of the driver. CIP DC/DC output voltage. Connect with a capacitor to VSSC. It should be connected to V0. CIP DC/DC flying capacitor terminal. CONNECT a capacitor between C1N and C1P. DC/DC flying capacitor terminal. CONNECT a capacitor between C1N and C2P. DC/DC flying capacitor terminal. CONNECT a capacitor between C2N and C2P. DC/DC flying capacitor terminal. CONNECT a capacitor between C2N and C2P. DC/DC flying capacitor terminal. CONNECT a capacitor between C2N and C3P. DC/DC flying capacitor terminal. CONNECT a capacitor between C3N and C3P. DC/DC flying capacitor terminal. CONNECT a capacitor between C3N and C3P. CONNECT a capacitor to VSSC. C4P DC/DC flying capacitor terminal. CONNECT a capacitor terminal. CONNECT a capacitor between C3N and C3P. C4P DC/DC flying capacitor terminal. C6D C4N CONNECT a capacitor terminal. C7D C7D C7D C7D C7D C7D C7D C7D C7D C7	8	D/C	This pin is Data/Command control pin.
This pin is the reset signal input. Initialization of the chip is started once this pin is pulled low. Minimum pulse width for reset sequence is 20us. In serial interface mode, D1 is the serial data input (SDIN), D0 is the serial cloc input, (SCLK). BUSY A high level indicates busy status (output driving waveform) of the driver. VSS Ground. DC/DC output voltage. Connect with a capacitor to VSSC. It should be connected to V0. C1P DC/DC flying capacitor terminal. C1N Connect a capacitor between C1N and C1P. DC/DC intermediate output voltage. Connect with a capacitor to VSSC. If using external mode with HV buffer enabled, it should be connected to V0. DC/DC flying capacitor terminal. C2N Connect a capacitor between C2N and C2P. DC/DC flying capacitor terminal. C3N Connect a capacitor between C2N and C3P. DC/DC flying capacitor terminal. C3N Connect a capacitor between C3N and C3P. DC/DC flying capacitor terminal. C3N Connect a capacitor between C3N and C3P. DC/DC flying capacitor terminal. C3N Connect a capacitor between C3N and C3P. DC/DC flying capacitor terminal. C3N Connect a capacitor between C4N and C4P. DC/DC flying capacitor terminal. C4N Connect a capacitor between C4N and C4P. Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	9	CS1	These pins are the chip select inputs for communication between MCU. To select the chip CS1# must be low and CS2 must set high. For serial mode, it is needed to select the chip which CS1# must be low and
12 SD input, (SCLK). 13 BUSY A high level indicates busy status (output driving waveform) of the driver. 14 VSS Ground. 15 VCP1 DC/DC output voltage. Connect with a capacitor to VSSC. It should be connected to V0. 16 C1P DC/DC flying capacitor terminal. 17 C1N Connect a capacitor between C1N and C1P. 18 VCP2 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. If using external mode with HV buffer enabled, it should be connected to V0. 19 C2P DC/DC flying capacitor terminal. 20 C2N Connect a capacitor between C2N and C2P. 21 VCP3 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	10	RESET	This pin is the reset signal input. Initialization of the chip is started once this pin
12 SD input, (SCLK). 13 BUSY A high level indicates busy status (output driving waveform) of the driver. 14 VSS Ground. 15 VCP1 DC/DC output voltage. Connect with a capacitor to VSSC. It should be connected to V0. 16 C1P DC/DC flying capacitor terminal. 17 C1N Connect a capacitor between C1N and C1P. 18 VCP2 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. If using external mode with HV buffer enabled, it should be connected to V0. 19 C2P DC/DC flying capacitor terminal. 20 C2N Connect a capacitor between C2N and C2P. 21 VCP3 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	11	SCLK	In serial interface mode, D1 is the serial data input (SDIN), D0 is the serial clock
14 VSS Ground. 15 VCP1 DC/DC output voltage. Connect with a capacitor to VSSC. It should be connected to V0. 16 C1P DC/DC flying capacitor terminal. 17 C1N Connect a capacitor between C1N and C1P. 18 VCP2 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. If using external mode with HV buffer enabled, it should be connected to V0. 19 C2P DC/DC flying capacitor terminal. 20 C2N Connect a capacitor between C2N and C2P. 21 VCP3 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	12	SD	input, (SCLK).
15 VCP1 DC/DC output voltage. Connect with a capacitor to VSSC. It should be connected to V0. 16 C1P DC/DC flying capacitor terminal. 17 C1N Connect a capacitor between C1N and C1P. 18 VCP2 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. If using external mode with HV buffer enabled, it should be connected to V0. 19 C2P DC/DC flying capacitor terminal. 20 C2N Connect a capacitor between C2N and C2P. 21 VCP3 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	13	BUSY	A high level indicates busy status (output driving waveform) of the driver.
It should be connected to V0. 16 C1P DC/DC flying capacitor terminal. 17 C1N Connect a capacitor between C1N and C1P. 18 VCP2 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. If using external mode with HV buffer enabled, it should be connected to V0. 19 C2P DC/DC flying capacitor terminal. 20 C2N Connect a capacitor between C2N and C2P. 21 VCP3 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	14	VSS	
17 C1N Connect a capacitor between C1N and C1P. 18 VCP2 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. If using external mode with HV buffer enabled, it should be connected to V0. 19 C2P DC/DC flying capacitor terminal. 20 C2N Connect a capacitor between C2N and C2P. 21 VCP3 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	15	VCP1	
18 VCP2 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. If using external mode with HV buffer enabled, it should be connected to V0. 19 C2P DC/DC flying capacitor terminal. 20 C2N Connect a capacitor between C2N and C2P. 21 VCP3 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	16	C1P	
If using external mode with HV buffer enabled, it should be connected to V0. 19 C2P DC/DC flying capacitor terminal. 20 C2N Connect a capacitor between C2N and C2P. 21 VCP3 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	17	C1N	-
Connect a capacitor between C2N and C2P. DC/DC intermediate output voltage. Connect with a capacitor to VSSC. C3P DC/DC flying capacitor terminal. Connect a capacitor between C3N and C3P. C3N Connect a capacitor between C3N and C3P. C4P DC/DC intermediate output voltage. Connect with a capacitor to VSSC. C4P DC/DC flying capacitor terminal. C5P C4P DC/DC flying capacitor terminal. C6P C4N Connect a capacitor between C4N and C4P. C6P C4N Connect a capacitor between C4N and C4P. C6P C4N Connect a capacitor between C4N and C4P. C7P C5P C5P C5P C5P C5P C5P C5P C5P C5P C5	18	VCP2	
21 VCP3 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	19	C2P	DC/DC flying capacitor terminal.
22 C3P DC/DC flying capacitor terminal. 23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	20	C2N	Connect a capacitor between C2N and C2P.
23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	21	VCP3	DC/DC intermediate output voltage. Connect with a capacitor to VSSC.
23 C3N Connect a capacitor between C3N and C3P. 24 VCP4 DC/DC intermediate output voltage. Connect with a capacitor to VSSC. 25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	22	СЗР	DC/DC flying capacitor terminal.
25 C4P DC/DC flying capacitor terminal. 26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	23	C3N	
26 C4N Connect a capacitor between C4N and C4P. 27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	24	VCP4	DC/DC intermediate output voltage. Connect with a capacitor to VSSC.
27 VCI Power supply for DC-DC converter and analog part of the chip. It should be connected to VDD.	25	C4P	DC/DC flying capacitor terminal.
It should be connected to VDD.	26	C4N	Connect a capacitor between C4N and C4P.
	27	VCI	
1	28	VSS	

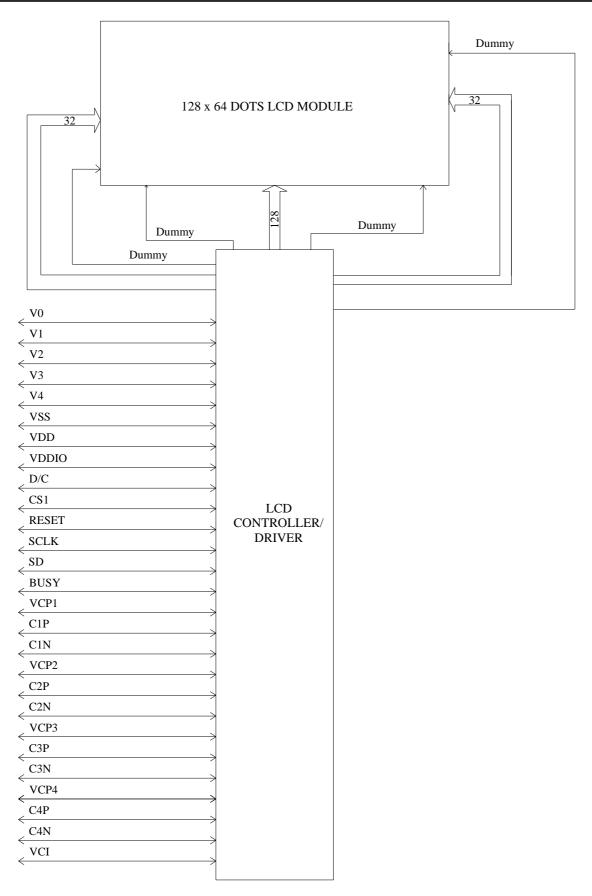
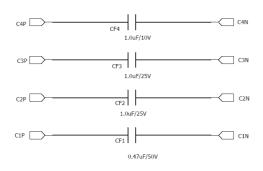
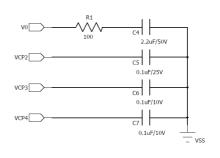
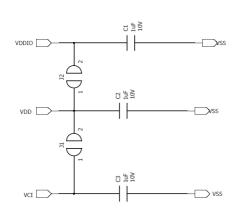
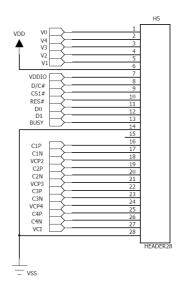
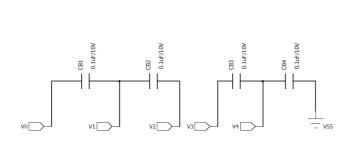






Figure 2: Block Diagram



COG Version IC Interface

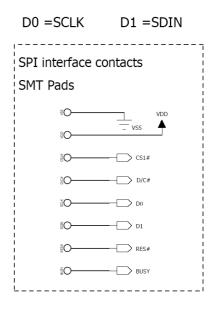


Figure 3: Circuit Diagram

6. Absolute Maximum Ratings

6.1 Electrical Maximum Ratings-For IC Only

Table3

Parameter	Symbol	Conditions	Min.	Max.	Unit
	V_{DD}		-0.3	+3.6	V
Supply Voltage	V _{DDIO}	TA=+25°C,	-0.3	Min(VDD+0.5,+3.6)	V
Supply Voltage	V ₀	Referenced to	-0.3	+38	V
	Vcı	$V_{SS} = 0V$	-0.3	+3.6	V
Input Voltage	Vin		V _{ss} - 0.3	V _{DDIO} + 0.3	V

Note1: $TA = +25^{\circ}C$

Note2: The maximum applicable voltage on any pin with respect to VSS (0V).

Note3: The modules may be destroyed if they are used beyond the absolute maximum ratings.

6.2 Environmental Condition

Table4

Item	Opera Tempe (Top	rature	Tempe	rage erature stg)	Remark
	Min.	Max.	Min.	Max.	
Ambient Temperature	-20°C	+70°C	-30°C	+80°C	Dry
Humidity	90% max. R < 50% RH f temperature	for 40° C $<$ T	No Condensation		
Packing Vibration (GB/T5170.14-2009)	Frequency R Acceleration X,Y,Z 30 m	of Gravity:	3 Directions		

Note: Product cannot sustain at extreme storage conditions for long time.

7. Electrical Specifications

7.1 Typical Electrical Characteristics

At $Ta = 25^{\circ}C$, $VDD = +3.0V \pm 5\%$, VSS=0V.

Table5

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	VDD-VSS		2.7	3.0	3.5	V
(System)	VCI-VSS		VDD	-	3.5	V
(Oystern)	VLCD		-	26	-	V
Input Signal Voltage Low	V_{IL}		0	-	0.2V _{DDIO}	٧
Input Signal Voltage High	V_{IH}		0.8V _{DDIO}	-	V_{DDIO}	V
Supply Current	IDD	VDD=3.0V	-	0.5	-	mA
Supply Current	ICI	VCI=3.0V	-	0.9	2.0	mA

^{*} Internally Generated

7.2 TIMING Specifications

At
$$Ta = +25$$
°C, $VDD = VCI = VDDIO = +3.0V \pm 5\%$

Table 6

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	60	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	20	-	_	ns
t _{DSW}	Write Data Setup Time	30	-	-	ns
t _{DHW}	Write Data Hold Time	30	-	-	ns
T_{CLKL}	Clock Low Time	30	-	-	ns
T_{CLKH}	Clock High Time	30	-	-	ns
t _{CSS}	Chip Select Setup Time (for D7 input)	30	-	-	ns
t _{CSH}	Chip Select Hold Time (for D0 input)	30	-	-	ns
t _R	Rise Time	-	-	10	ns
$t_{\mathbf{F}}$	Fall Time	-	-	10	ns

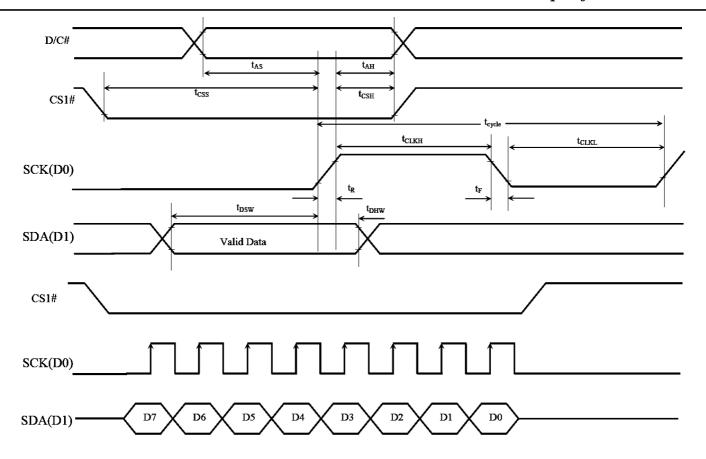


Figure 4: Timing characteristic of 4-wires Serial Interface

7.3 COMMAND TABLE

7.3.1. Command Table

(D/C# = 0, R/W#(WR#) = 0, E=1(RD# = 1) unless specific setting is stated)

D/C	Hex	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Command	Description
0	10 – 1F	0	0	0	1	A ₃	A ₂	A ₁	A ₀	Set column address	Set the higher nibble of the column address register using $A_3A_2A_1A_0$ as data bits. The higher nibble of column address is reset to 0000b after POR. [POR=10_HEX] Set the lower nibble of the column address register using $B_3B_2B_1B_0$ as data bits. The lower nibble of
				_		_	_	_	_		column address is reset to 0000b after POR.
0	2A – 2F	0	0	0	0	B ₃	B ₂	B ₁	B ₀	Set Power Control	[POR=00 _{HEX}] X ₂ =0: turns off Charge Pump
O	2A – 2F	U					\^2		^ 0	Register	X₂=1: turns on Charge Pump X₂=1: turns on Charge Pump X₀= 0: turns off Bias Voltage buffer X₀=1: turns on Bias Voltage buffer [POR=2A _{HEX}]
0	31	0	0	1	1	0	0	0	1	Driving update	Update RAM content to the screen through segment and common pins. Driving sequence is always in: VA clearing phase →Idle 1 phase → AA clearing phase → Idle 2 phase → Driving phase
0	32	0	0	1		0	0	1	0	Driving Scheme	Driving Scheme Setting Active Area Control after clearing X ₆ X ₅ = 01, Active Area is responsible to data 1 X ₆ X ₅ = 11, Active Area is responsible to data 0 Border Control after clearing X ₄ = X ₁ = 0, Border is responsible to data 0 X ₄ = X ₁ = 1, Border is responsible to data 1 X ₃ : driving polarity 0: M starts as 1 at Driving phase 1: M starts as 0 at Driving phase X ₂ : clearing polarity 0: M starts as 1 at Clearing phase 1: M starts as 0 at Clearing phase
0	40 – 7F	0	X ₆	X ₅	X ₄	X ₃	X ₂	X ₁	υ Χ ₀	Set Display Start	[POR=00 _{HEX}] Display start line register is reset to 000000 after
										Line	POR for all MUX modes. [POR=40 _{HEX}]
0 0 0 0 0 0	C[4:0]	1 0 0 0 0 0 0	0 0 0 0 0 0 6 H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 B4 C4 D4 E4 G4 H4	0 0 B ₃ C ₃ D ₃ E ₃ G ₃ H ₃	0 0 B ₂ C ₂ D ₂ E ₂ F ₂ G ₂	0 B ₁ C ₁ D ₁ E ₁ G ₁ H ₁	0 0 0 0 0 0 0 0 0 0	Set the control scheme	Set the control scheme. B[4:0]: VA Clearing Duration C[4:0]: Idle 1 Duration D[4:0]: AA Clearing Duration E[4:0]: Idle 2 Duration F[4:0]: Driving Duration G[6:1]: Clearing Voltage H[6:1]: Driving Voltage
0	93	1	0	0	1	0	0 X ₂	1	1 X ₀	Set view area phase repeat times	X ₃ X ₂ X ₁ X ₀ is Repeat time setting *Remark: If VA clearing phase repeat time is set to 0, it is also needed to set the idle 1 phase repeat time to 0. [POR=01 _{HEX}]
0	94	1	0	0	1	0 X ₃	1 X ₂	0 X ₁	0 X ₀	Set idle 1 phase repeat times	X ₃ X ₂ X ₁ X ₀ is Repeat time setting *Remark: If Idle 1 phase repeat time is set to 0, it is also needed to set the VA clearing phase repeat time to 0. [POR=01 _{HEX}]
0	95	1	0	0	1	0 X ₃	1 X ₂	0 X ₁	1 X ₀	Set active area clearing phase repeat times	X ₃ X ₂ X ₁ X ₀ is Repeat time setting *Remark: If AA clearing phase repeat time is set to 0, it is also needed to set the idle2 phase repeat time to 0. [POR=01 _{HEX}]
0	96	1	0	0	1	0	1	1	0 X ₀	Set idle 2 phase repeat times	X ₃ X ₂ X ₁ X ₀ is Repeat time setting *Remark: If Idle 2 phase repeat time is set to 0, it is also needed to set the AA clearing phase repeat time to 0. [POR=01 _{HEX}]
0	97	1	0	0	1	X₃ 0	X ₂	1	1	Set drive phase	X ₃ X ₂ X ₁ X ₀ is Repeat time setting [POR=01 _{HEX}]
0		0	0	0	0	X ₃	X_2	X ₁	X_0	repeat times	
0	A0 – A1	1	0	1	0	0	0	0	X ₀	Set Segment Re- map	X_0 =0: Column address 00h is mapped to SEG0 X_0 =1: Column address 83h is mapped to SEG0 [POR=A0 _{HEX}]

D/C	Hex	D_7	D ₆	D ₅	D ₄	D ₃	D_2	D ₁	D ₀	Command	Description
0	A2	1	0	1	0	0	0	1	0	Set LCD Bias	X ₂ X ₁ X ₀ =000: 1/9
					1						$X_2X_1X_0=001$: 1/8,
					1						$X_2X_1X_0=010: 1/7,$
					1						$X_2X_1X_0=011: 1/6,$
					1						X ₂ X ₁ X ₀ =100: 1/5,
					1						X ₂ X ₁ X ₀ =111: 1/4
0		0	0	0	О	0	X_2	X ₁	X_0		[POR=00 _{HEX}]
0	A3	1	0	1	0	0	0	1	1	Cat analas central	X ₄ X ₃ = 00: Disable
U	AS		ľ	'	ľ	ľ	ľ	l'	'	Set analog control	X ₄ X ₃ = 11: Enable
					1						X ₁ = 0: Standard BIAS VOLTAGE Buffer Setting
					1						1
					1						X ₁ = 1: Extra BIAS VOLTAGE Buffer Setting
		L		١.	l			l			[POR=00 _{HEX}]
0		0	0	0	X ₄	X ₃	0	X ₁	0		
0	A4 – A5	1	0	1	0	0	1	0	X ₀	Set Entire Display	X ₀ =0: normal display
					1					On/Off	X ₀ =1: entire display on
											[POR=A4 _{HEX}]
0	A6 – A7	1	0	1	0	0	1	1	X_0	Set Normal/Reverse	X₀=0: normal display
			1							Display	X₀=1: reverse display
			1								[POR=A6 _{HEX}]
0	A8	1	0	1	0	1	0	0	0	Set Multiplex Ratio	To select multiplex ratio N MUX
				l,	I _v	V		l,	V	· ·	$X_6X_5X_4X_3X_2X_1X_0 = N$ from 2 to 64
0		0	X ₆	X_5	X ₄	X ₃	X_2	X ₁	X_0		[POR=40 _{HEX}]
0	A9	1	0	1	0	1	0	0	1	Analog Control Auto	X ₀ = 0: OFF
ľ	1,10	Ι΄	ľ	Ι΄.	ľ	'	ľ	ľ	l	ON/OFF	X ₀ = 1: ON
								١	V	010011	[POR=00 _{HEX}]
0		0	0	0	0	0	0	0	X ₀		
0	AD	1	0	1	0	1	1	0	1	RAM Read/Write	X ₀ = 0: RAM read/write horizontal
			<u>ا</u>	<u>ا</u> ا	<u>ا</u> ر		<u>ا</u> ا	0	V	Direction	X ₀ = 1: RAM read/write vertical
0		0	0	0	0	0	0		X_0		[POR=00 _{HEX}]
0	AE	1	0	1	0	1	1	1	0	Set Auto Charge	$X_6X_5X_4X_3X_2X_1X_0$:
					1					pump Threshold	Auto Charge Pump Threshold
					1					Value	If contrast setting > threshold, 16X Charge Pump
					1						setting would be selected,
		_	l _v	I_	I_	V		l,	V		Otherwise, 8X Charge Pump is used.
0		0	X ₆	X ₅	X ₄	X ₃	X_2	X ₁	X_0		[POR=20 _{HEX}]
0	B0 – B7	1	0	1	1	0	X_2	X ₁	X_0	Set Page Address	Set GDDRAM Page Address (0-7) for read/write
							_	l			using $X_2X_1X_0$
					1						[POR=B0 _{HEX}]
0	C0 / C8	1	1	0	0	X ₃	0	0	0	Set COM Output	X ₃ =0: normal mode
ľ		Ι΄	Ι΄	ľ	ľ	/ 13	ľ	ľ	ľ	Scan Direction	X ₃ =1: remapped mode
			1								COM0 to COM [N-1] becomes COM [N-1] to COM0
					1						when Multiplex ratio is equal to N.
					1						[POR=C0 _{HEX}]
0	D3	1	1	0	1	0	0	1	1	Set Display Offset	After setting MUX ratio less than default value, data
ľ	D3	l '	Ι'	ľ	1'	١	ľ	l '	l '	Set Display Offset	will be displayed at the beginning/towards the end
					1						of display matrix.
			1								
					1						To move display towards Row 0 by L,
					1						$X_5X_4X_3X_2X_1X_0 = L$
			1	1	1	1	1	1			To move display away from Row 0 by L,
		l		1	1	1	1	1			$X_5X_4X_3X_2X_1X_0 = Y - L$
			1	1	1	1	1	1			Note: max value of L = Y – display MUX
l۵		١	lo	V.	V	V.	V-	l _v .	V-		Y represents POR default MUX
0	-	0	0	X ₅	X ₄	X ₃	-	-	X ₀	0.5	[POR=00 _{HEX}]
0	E2	1	1	1	0	0	0	1	0	Software Reset	Initialize internal status registers.
0		1	1	1	0	0	0	1	1	1	
0	E3	1	1	1	0	0	0	1	1	NOP	No operation
0	E9	1	1	1	0	1	0	0	1	Set Bias Resistor	X ₇ = 0: Disable
ľ		Ι'	1'	1'	ľ	['	ľ	ľ	Ι'	Ladder	X ₇ = 0. Disable X ₇ = 1: Enable
0		X ₇	0	lo	lo	0	1	0	0	Lauuci	[POR=04 _{HEX}]
0	F6	^7 1	1	-	1	0	1	1	0	Cot Interre	[РОК-04НЕХ] X6= 0: Disable
ľ	I LO	l' -	1'	1	1'	ľ	1'	Γ	ľ	Set Internal	
I ₀		<u>ا</u> ر	_	<u>ا</u> ر				<u>ا</u> ر		Oscillator	X ₆ = 1: Enable
0	-	0	X ₆	0	0	0	0	0	0		[POR=00 _{HEX}]
0	FD	1	1	1	1	1	1	0	1	Lock/unlock driver	X ₂ = 0: unlock driver
		l		1	1	1	1	1			X ₂ = 1: lock driver
			1	1	1	1	1	1			Or unlock driver when hardware reset
1		I	1	1	1			l		1	l
		l		1	1	1	1	1			(No command or data will be written to driver when
			1	1	1	1	1	1			the lock is high)
0		0	0	0	1	0	X_2	1	0		[POR=12 _{HEX}]
0	FE	1	1	1	1	1	1	1	0	Set Clock Enable	X ₇ = 0: Disable
			1	1	1	1	1	1			X ₇ = 1: Enable
0		X ₇	0	0	lo	0	0	0	0		[POR=00 _{HEX}]
<u> </u>	<u> </u>	/\/	10	ľ	10	10	10	10	, J	I	· ·

7.3.2.Read Command Table

(D/C# = 0, R/W#(WR#) = 1, E=1(RD# = 0) unless specific setting is stated)

D/C	Hex	D ₇	D ₆	D_5	D ₄	D_3	D ₂	D ₁	D_0	Command	Description
0	00 -	X ₇	X ₆	X5	0	X ₃	X_2	X ₁	X ₀	Status Register	X ₇ =0: indicates the driver is ready for
	FF									Read	command.
											X ₇ =1: indicates the driver is Busy.
											X ₆ =0: indicates normal segment mapping with
											column address.
											X ₆ =1: indicates reverse segment mapping
											with column address.
											X₅=0: indicates the display is ON.
											X₅=1: indicates the display is OFF.
											$X_3X_2X_1X_0 = 0010$, the 4-bit is fixed to 0010 which
											could be used to identify as Device.

7.4 Temperature Compensation

Table 7: TC Table

_	View Area	View Area Idle	Active Area	Active Area	Drive
Temperature, T(°C)	Clear Duration	Duration	Clear Duration	Idle Duration	Duration
. (3)	(ms)	(ms)	(ms)	(ms)	(ms)
50≪T<70	6	12	100	12	6
10≤T<50	18	12	100	12	18
0≤T<10	35	12	150	12	35
-5≪T<0	50	12	200	12	50
-10≶T<-5	80	12	250	12	80
-15≶T<-10	150	12	350	12	150
-20≶T<-15	350	12	700	12	350

8. Optical Characteristics (at 25° C)

Table 8

Item	Symbol	Value			I In:	Condition	
		Min.	Тур.	Max.	Unit	Condition	
Image Refresh Time	-	-	2.4	-	S	VDD= 3.0 V, VLCD= 31.0 V At Ta = -20 °C	
	-	-	2.2	-	S	VDD= 3.0 V, VLCD = 28.0 V At Ta = -10 °C	
	-	-	2.0	-	S	VDD= 3.0 V, VLCD = 26.8 V At Ta = 0 °C	
	-	-	1.8	-	S	VDD=3.0V, VLCD =26.0V At Ta = +5°C VDD=3.0V, VLCD =26.0V At Ta = +25°C VDD=3.0V, VLCD =25.7V At Ta = +50°C VDD=3.0V, VLCD =25.0V At Ta = +70°C	
	-	-	1.8	-	S		
	-	-	1.8	-	S		
	-	-	1.6	-	S		
Contrast Ratio	CR	-	6	-	ı	-	
Optimum Viewing Area Cr ≥ 2	θ1(6 o'clock)	-	80	-	DEG	4 – 00	Vop= Optimum Voltage
	θ2(12 o'clock)	-	80	-		φ = 0°	
	\$1(3 o'clock)	-	80	-	DEG	φ = 0°	
	φ2(9 o'clock)	-	80	-			

8.1 Optical Characteristics Definition

8.1.1 Viewing Angle

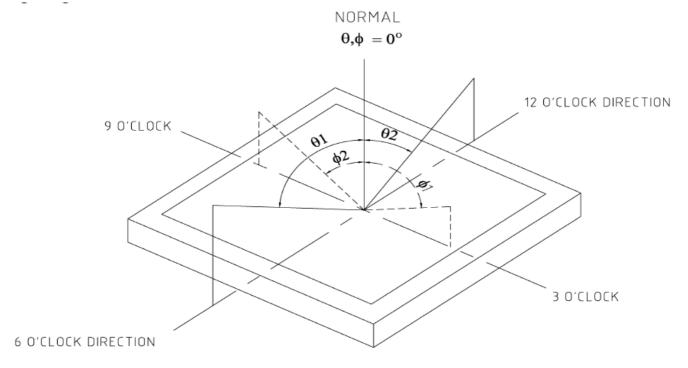


Figure 5

8.1.2 Contrast Ratio

B1 = pixel luminance at stable dark state

B2 = pixel luminance at stable bright state

Contrast Ratio = B2/B1

9. LCD Cosmetic Conditions

LCD size of the product is small.

10. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(2) Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Trichloro trifloro thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water

- Ketone

- Aromatics

(3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power

is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.

(4) Packaging

- Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
- To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.

(5) Caution for operation

- It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
- Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the relative condition of 40°C, 50%RH or less is reequired.

(6) Storage

In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, The following ways are recommended.

- Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)

(7) Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol.

Which should be burned up later.

(8) Other

- After the product shipped, any product quality issues must be feedback within three months, otherwise, we will not be responsible for the subsequent or consequential events