DISPLAY Elektronik	GmbH
DATA SHEET	
LCD MODULE	
DEM 08172 SYH-PY-	CYR22
Product Specification	Version : 1

22.Aug. 2008

GENERAL SPECIFICATION

MODULE NO. :

DEM 08172 SYH-PY-CYR22

CUSTOMER P/N

VERSION NO.	CHANGE DESCRIPTION	DATE
0	ORIGINAL VERSION	10.05.2008
1	ADD PRINT ON THE PCB	16.06.2008

PREPARED BY: HCL

DATE: 16.06.2008

APPROVED BY: MH

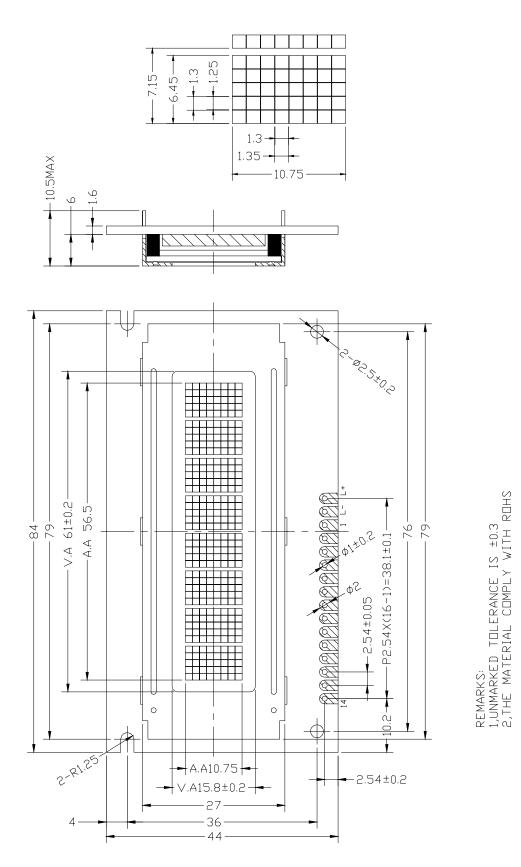
DATE: 22.08.2008

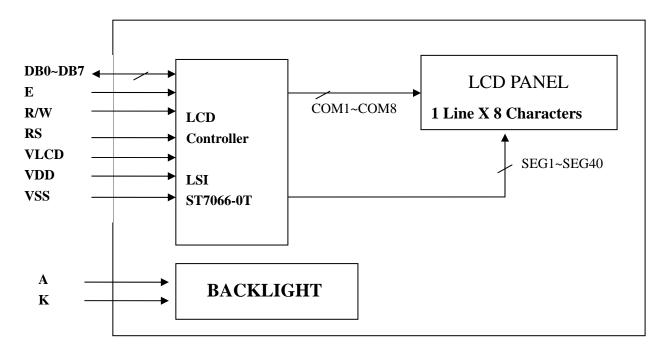
DEM 08172 SYH-PY-CYR22

CONTENTS

1. FUNCTIONS & FEATURES	2
2. MECHANICAL SPECIFICATIONS	2
3. EXTERNAL DIMENSIONS	3
4. BLOCK DIAGRAM	4
5. PIN ASSIGNMENT	4
6. PCB DRAWING AND DESCRIPTION	5
7. BACKLIGHT ELECTRICAL/OPTICAL CHARACTERISTICS	6
8. MAXIMUM ABSOLUTE LIMIT	7
9. ELECTRICAL CHARACTERISTICS	8
10. INSTRUCTION TABLE	
11. STANDARD CHARACTER PATTERN	
12. LCD MODULES HANDLING PRECAUTIONS	12
13. OTHERS	12

1. FUNCTIONS & FEATURES

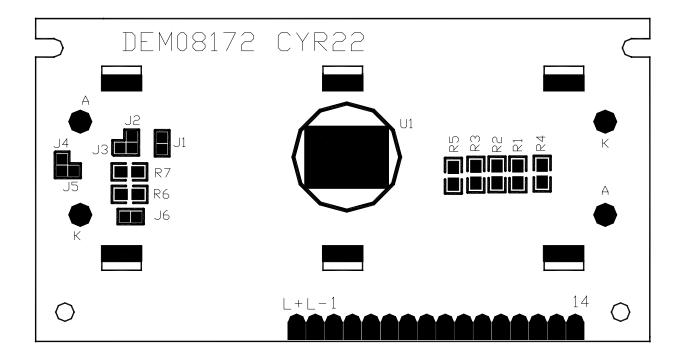

MODULE	LCD TYPE
DEM 08172 SYH-PY-CYR22	STN Yellow Green Transflective Positive Mode
• Viewing Direction	: 6 O'clock
• Driving Scheme	: 1/8 Duty Cycle, 1/4 Bias
• Power Supply Voltage	: 5.0 V (typ.)
• Backlight Color	: Yellow Green (For B00)
• VLCD (VDD-V5)	: 4.5 V (typ.)
• Display contents	: 8 x 1Characters (5 x 8 dots, Format: 208 Kinds)
• Internal Memory	: CGROM (10,080 bits)
	: CGRAM (64 x 8 bits)
	: DDRAM (80 x 8 bits for Digits)
• CGROM	: CGROM of the ST7066-0T
• Operating Temperature	: - 20° C to + 70° C
• Storage Temperature	$: -25^{\circ}C \text{ to } + 75^{\circ}C$
• Interface	: Easy Interface with a 4-bit or 8-bit MPU


2. MECHANICAL SPECIFICATIONS

- Character Pitch
- Character Size
- Character Font
- Dot Size
- Dot Pitch

- : 84.00 x 44.00 x 10. 50 (MAX)mm
- : 7.15 (W) x 10.75 (H) mm
- : 6.45 (W) x 10.75 (H) mm
- : 5 x 8 dots
- : 1.25 (W) x 1.30 (H) mm
- : 1.30 (W) x 1.35 (H) mm

3. EXTERNAL DIMENSIONS



4. BLOCK DIAGRAM

5. PIN ASSIGNMENT

Pin No.	Symbol	Function		
1	Vss	Ground		
2	Vdd	Power supply		
3	Vlcd	Power Supply for LCD		
4	RS	Select Display Data ("H") or Instructions ("L")		
5	R/W	Read or Write Select Signal		
6	E	Read/Write Enable Signal		
7	DB0			
8	DB1			
9	DB2			
10	DB3	Display Data Signal		
11	DB4	Display Data Sigilar		
12	DB5			
13	DB6			
14	DB7			
15	LED-(K)	Place also refer to 6.1 PCB Drawing and description		
16	LED+(A)	Place also refer to 6.1 PCB Drawing and description		

6. PCB DRAWING AND DESCRIPTION

DESCRIPTION:

6-1. The polarity of the pin 15 and the pin 16:

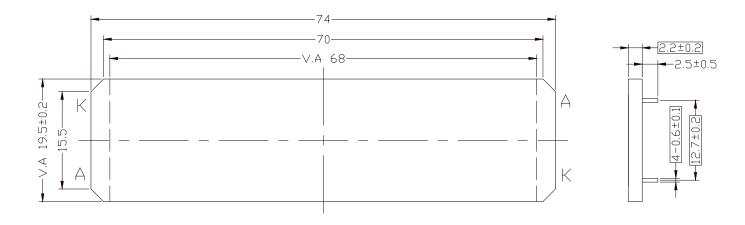
12 15	12 14	LED Polarity			
J3,J5	J2, J4	15 Pin	16 Pin		
Each open	Each closed	Anode	Cathode		
Each closed	Each open	Cathode	Anode		

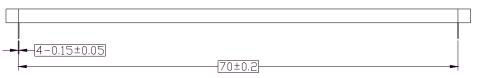
Note: In application module, J2=J4= open and J3=J5=closed

6-2. The metal-bezel is set on ground when the J1 is closed

Note: In application module, J1=closed

6-1-3. The LED resistor should be bridged when the J6 is closed


Note: In application module, J6=open


6-1-4. The R6 and the R7 are the LED resistor.

Note: R6=24 ohm,R7=open (For B00)

7. BACKLIGHT ELECTRICAL/OPTICAL CHARACTERISTICS

	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Forward Voltage	Vf		4. 1	4.5	V	lf= 20*2 mA
Forward Current	If		20*2	40*2	mA	lf= 20*2 mA
Power Dissipation	Pd		0. 17		W	lf= 20*2 mA
Reverse Voltage	VR		10		V	
Reverse Current	IR		0.05		mA	
Luminous Intensity	Lv	20	30	40	cd/m^2	lf= 20*2 mA
Emission Wavelength			572		nm	If =10mA Ta=25° C
	λP		572		1 11 11	Each chip

Electrical Circuit

A • ▶ ▶ K

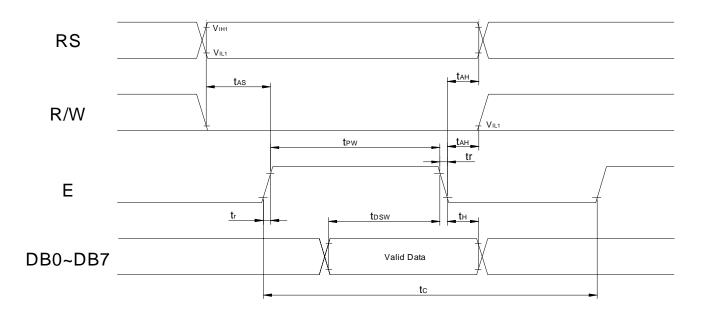
A • • K

2X2=4 PCS

Remarks: 1,Unmarked tolerance is ±0.3, 2,The material comply with RoHS.

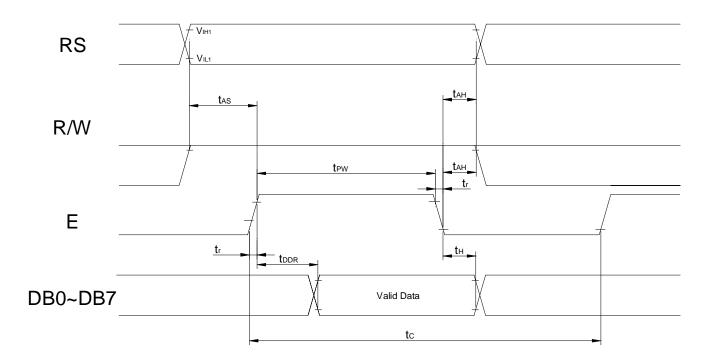
8. MAXIMUM ABSOLUTE LIMIT

Characteristics	Symbol	Value	Unit
Power Supply Voltage	Vdd	-0.3 to +7.0	V
LCD Driver Voltage	VLCD	VDD-10.0 to VDD+0.3	V
Input Voltage	Vin	-0.3 to Vcc+0.3	V
Operating Temperature	Та	-20~+70	°C
Storage Temperature	Тѕто	-25~+75	°C


9. ELECTRICAL CHARACTERISTICS

9-1 DC Characteristics (VDD = 5V , Ta = -25°C)

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
Vcc	Operating Voltage	-	4.5	5	5.5	V
Vlcd	LCD Voltage	VDD-V5	3.0	4.5	10.0	V
lcc	Power Supply Current	fosc= 270KHz Vcc=5.0V	-	0.2	0.5	mA


9-2 AC Characteristics (VDD = 5V , Ta = -25°C) 9-2-1 Write mode (writing data from MPU to module)

Characteristic	Symbol	Min	Туре	Max	Unit	Test PIN
E Cycle Time	t _C	1200			ns	Е
E Rise Time	t _R			25	ns	Е
E Fall Time	t _F			25	ns	Е
E Pulse width (High,Low)	t _W	140			ns	Е
R/W and RS Set-up Time	t _{SU1}	0			ns	R/W,RS
R/W and RS Hold Time	t _{H1}	10			ns	R/W,RS
Data Set-up Time	t _{SU2}	40			ns	DB0~DB7
Data Hold Time	t _{H2}	10			ns	DB0~DB7

9-2-2 Read mode (reading data from module to MPU)

Characteristic	Symbol	Min	Туре	Max	Unit	Test PIN	
E Cycle Time	t _C	1200			ns	Е	
E Rise Time	t _R			25	ns	E	
E Fall Time	t _F			25	ns	Е	
E Pulse width (High, Low)	t _W	140			ns	Е	
R/W and RS Set-up Time	t _{SU}	0			ns	R/W,RS	
R/W and RS Hold Time	t _H	10			ns	R/W,RS	
0Data Output Delay Time	t _D			120	ns	DB0~DB7	
Data Hold Time	t _{DH2}	10			ns	DB0~DB7	

Product Specification

10. INSTRUCTION TABLE

Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Executi on time (fosc=2 70KHz)	Remark		
Clear Display	0	0	0	0	0	0	0	0	0	1	1.52ms	Write"20H" to DDRAM. And set DDRAM address to "00H" from AC		
Return home	0	0	0	0	0	0	0	0	1	x	1.52ms	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.		
Entry mode Set	0	0	0	0	0	0	0	1	I/D	S	37us	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.		
Display on/off control	0	0	0	0	0	0	1	D	С	В	37us	D=1: entire display on C=1: cursor on B=1: cursor position on		
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	x	x	37us	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.		
function Set	0	0	0	0	1	DL	Ν	F	x	x	37us	DL: interface data is 8/4 bits N: number of line is 2/1 F: font size is 5x11/5x8		
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	37us	Set CGRAM address in address counter		
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	37us	Set DDRAM address in address counter		
Read busy flag& address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	0us	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.		
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	37us	Write data into internal RAM (DDRAM/CGRAM)		
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	37us	Read data from internal RAM (DDRAM / CGRAM)		

Note:

Be sure the ST7066U is not in the busy state (BF=00 before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to instruction table for the list of each instruction execution time.

11. STANDARD CHARACTER PATTERN

NØ.7066-0T

67-64 63-60	0000	0001	0010	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	11 10	1111
0000	CG RAM (1)														
0001	(2)														
0010	(3)														
0011	(4)														
0 100	(5)														
0101	(6)														
0110	7)														
0111	(8)														
1000	(1)														
1001	(2)														
1010	(3)														
1011	(4)														
1100	(5)														
1101	(6)														
1110	(7)														
1111	(8)														

12. LCD MODULES HANDLING PRECAUTIONS

- Please remove the protection foil of polarizer before using.
- The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- If the display panel is damaged and the liquid crystal substance inside it leaks out, do not get any in your mouth. If the substance comes into contact with your skin or clothes promptly wash it off using soap and water.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 Be sure to ground the body when handling the LCD module.

-Tools required for assembly, such as soldering irons, must be properly grounded.

-To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions. -The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

Storage precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperatures below 0°C).Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

13. OTHERS

- Liquid crystals solidify at low temperature (below the storage temperature range) leading to defective orientation of liquid crystal or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subjected to a strong shock at a low temperature.
- If the LCD modules have been operating for a long time showing the same display, patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. Abnormal operating status can be resumed to be normal condition by suspending use for some time. It should be noted that this phenomena does not adversely affect performance reliability.
- To minimize the performance degradation of the LCD modules resulting from caused by static electricity, etc. exercise care to avoid holding the following sections when handling the modules:
 - Exposed area of the printed circuit board
 - Terminal electrode sections