# DISPLAY Elektronik GmbH

# DATA SHEET

# LCD MODULE

# **DEM 16481 FGH-PW**

**Product Specification** 

Version: 3

# GENERAL SPECIFICATION

# MODULE NO.:

# **DEM 16481 FGH-PW**

### CUSTOMER P/N

| VERSION NO. | CHANGE DESCRIPTION                                                               | DATE       |
|-------------|----------------------------------------------------------------------------------|------------|
| 0           | ORIGINAL VERSION                                                                 | 27.12.2007 |
| 1           | ADD A VERSION                                                                    | 16.06.2008 |
| 2           | ADD A VERSION                                                                    | 18.09.2014 |
| 3           | Change the VDD from -0.3~+7.0 V to -0.3~+6V;VLCD from 3.0~10V to 3.0~7V in page7 | 08.01.2018 |
|             |                                                                                  |            |
|             |                                                                                  |            |
|             |                                                                                  |            |
|             |                                                                                  |            |
|             |                                                                                  |            |

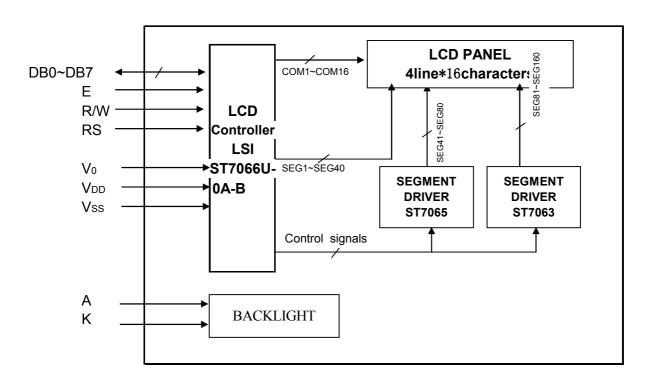
PREPARED BY: <u>PS</u> DATE: <u>08.01.2018</u>

APPROVED BY: MHO DATE: 08.01.2018

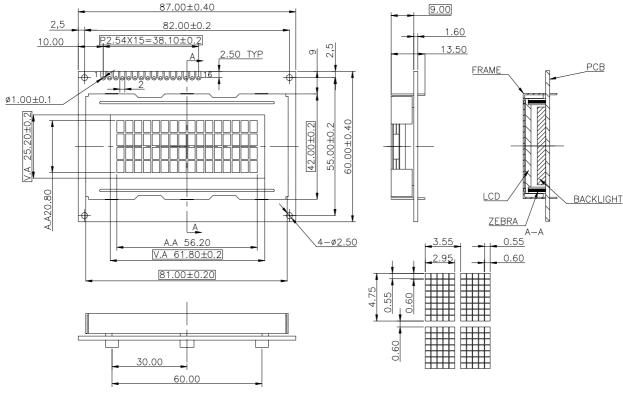
# **CONTENTS**

| 1. FUNCTIONS & FEATURES                | 2  |
|----------------------------------------|----|
| 2. MECHANICAL SPECIFICATIONS           | 2  |
| 3. BLOCK DIAGRAM                       | 3  |
| 4. EXTERNAL DIMENSIONS                 | 3  |
| 5. PIN ASSIGNMENT                      | 4  |
| 6. PCB DRAWING AND DESCRIPTION         | 5  |
| 7. BACKLIGHT VOLTAGE AND CURREN        | 6  |
| 8. DISPLAY DATA RAM                    | 6  |
| 9. MAXIMUM ABSOLUTE POWER RATINGS      | 7  |
| 10. ELECTRICAL CHARACTERISTICS         | 7  |
| 11. CONTROL AND DISPLAY COMMAND        | 10 |
| 12. CHARACTR GENERATOR ROM             | 11 |
| 13. QUALITY DESCRIPTION                | 12 |
| 14. MODULES ACCEPT QUALITY LEVEL (AQL) | 13 |
| 15. RELIABILITY TEST                   | 13 |
| 16. LCD MODULES HANDLING PRECAUTIONS   | 14 |
| 17. OTHERS                             | 14 |

### 1. FUNCTIONS & FEATURES


| Module                                   | LCD Type                                   |
|------------------------------------------|--------------------------------------------|
| DEM 16481 FGH-PW                         | FSTN Transflective Positive Mode           |
| Viewing Direction                        | : 6 O'clock                                |
| <ul> <li>Driving Scheme</li> </ul>       | : 1/16 Duty Cycle, 1/5 Bias                |
| <ul> <li>Power Supply Voltage</li> </ul> | : 5.0 Volt (typ.)                          |
| <ul> <li>Backlight Type</li> </ul>       | : White Light guide                        |
| VLCD Adjustable For Best Contr           | ast : 4.5 Volt (typ.)                      |
| <ul><li>Display contents</li></ul>       | : 16 x 4 Characters                        |
| <ul> <li>Internal Memory</li> </ul>      | : CGROM (8,320 bits )                      |
|                                          | : CGRAM (64 x 8 bits )                     |
|                                          | : DDRAM (80 x 8 bits)                      |
| • CGROM                                  | : CGROM of the ST7066U-0A-B                |
| <ul><li>Interface</li></ul>              | : Easy Interface with a 4-bit or 8-bit MPU |

# 2. MECHANICAL SPECIFICATIONS


• Module Size : 87.00 x 60.00 x 13.50 mm

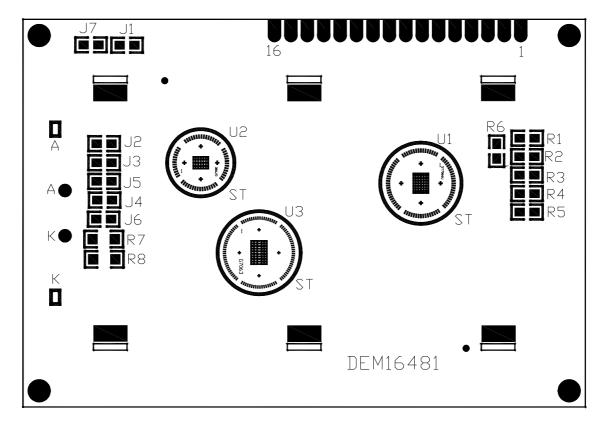
Character Pitch
 Character Size
 Character Font
 Dot Size
 Dot Pitch
 3.55 x 5.35 mm
 2.95 x 4.75 mm
 5 x 8 dots
 0.55 x 0.55 mm
 0.60 x 0.60 mm

### 3. BLOCK DIAGRAM



#### 4. EXTERNAL DIMENSIONS




REMARKS:

1.UNMARKED TOLERANCE IS ±0.5 2.ALL MATERIAL COMPLY WITH ROHS

# **5. PIN ASSIGNMENT**

| Pin No. | Symbol    | Function                                                                       |
|---------|-----------|--------------------------------------------------------------------------------|
| 1       | VSS       | Ground terminal of module.                                                     |
| 2       | VDD       | Power terminal of module 5.0V.                                                 |
| 3       | V0        | Power Supply for liquid crystal drive.                                         |
| 4       | RS        | Register select RS = 0···Instruction register RS = 1···Data register           |
| 5       | R/W       | Read /Write R/W = 1···Read R/W = 0···Write                                     |
| 6       | Е         | Read/Write Enable Signal                                                       |
| 7       | DB0       |                                                                                |
| 8       | DB1       |                                                                                |
| 9       | DB2       | Bi-directional data bus, data transfer is performed once, thru DB0 to DB7, in  |
| 10      | DB3       | the case of interface data. Length is 8-bits; and twice, thru DB4 to DB7, in   |
| 11      | DB4       | case of interface data length is 4-bits. Upper four bits first then lower four |
| 12      | DB5       | bits.                                                                          |
| 13      | DB6       |                                                                                |
| 14      | DB7       |                                                                                |
| 15      | LED – (K) | Please also refer to 6.1 PCB drawing and description.                          |
| 16      | LED + (A) | Please also refer to 6.1 PCB drawing and description.                          |

#### 6. PCB DRAWING AND DESCRIPTION



Note: The part no. DEM16481 is printed on the PCB.

#### **DESCRIPTION:**

6-1-1. The polarity of the pin 15 and the pin 16

| LED Polarity(1) |                  |  |  |  |  |  |  |  |
|-----------------|------------------|--|--|--|--|--|--|--|
| 15 Pin 16Pin    |                  |  |  |  |  |  |  |  |
| Anode           | Cathode          |  |  |  |  |  |  |  |
| J3 = J          | J3=J5=open       |  |  |  |  |  |  |  |
| J2=J4           | J2 = J4 = closed |  |  |  |  |  |  |  |

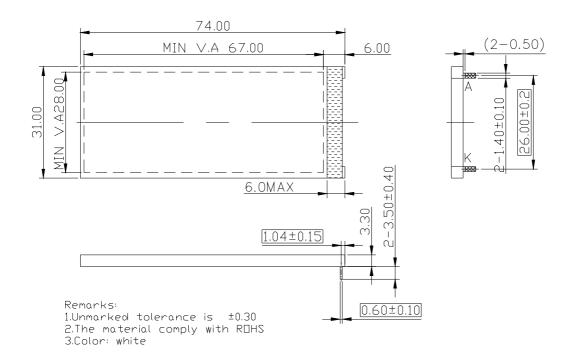
| LED Polarity(2)             |  |  |  |  |  |  |  |
|-----------------------------|--|--|--|--|--|--|--|
| 16 Pin                      |  |  |  |  |  |  |  |
| Anode                       |  |  |  |  |  |  |  |
| J3=J5= closed $J2=J4=$ open |  |  |  |  |  |  |  |
|                             |  |  |  |  |  |  |  |

Note: In application module, J2=J4= open and J3=J5=0 Ohm

#### 6-1-2. The metal-bezel is set be on ground when the J1 is solder-Bridge.

Note: In application module, J1=0 Ohm

#### 6-1-3. The LED resistor should can be bridged when the J6 is solder-Bridge.


Note: In application module, J6=open

#### 6-1-4. The R7 and the R8 are the LED resistor.

Note: In application module, R7=15 Ohm, R8=open

# 7. BACKLIGHT VOLTAGE AND CURREN

|                     | SYMBOL | MIN. | TYP.  | MAX. | UNIT              | CONDITIONS      |
|---------------------|--------|------|-------|------|-------------------|-----------------|
| Forward Voltage     | Vf     |      | 4.0   | 4.2  | V                 | If= 80mA        |
| Forward Current     | l f    |      | 80    | 100  | mA                |                 |
| Power Dissipation   | Pd     |      | 0.32  |      | W                 | If= 80mA        |
| Reverse Voltage     | ٧R     |      | 4.0   |      | V                 |                 |
| Reverse Current     | IR     |      | 1.2   |      | mA                |                 |
| Luminous Intensity  | IV     |      | 110.0 |      | cd/m <sup>2</sup> | If= 80mA        |
| Luminous Uniformity |        | 70   |       |      | %                 | II- OUIIIA      |
| Emitted Color       | Ec     |      |       |      | K                 |                 |
| Emission Wavelength | λР     |      | White |      | nm                | If =20mA Ta=25; |
| Spectral Range      | Δλ     |      | 20    |      | nm                | Each chip       |



# 8. DISPLAY DATA RAM (DDRAM)

|        |      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12  | 13 | 14  | 15 | 16  | Display position |
|--------|------|----|----|----|----|----|----|----|----|----|----|----|-----|----|-----|----|-----|------------------|
| FIRST  | LINE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B  | 0C | OD  | 0E | OF. | DDRAM Address    |
| SECOND | LINE | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4 B | 4C | 4 D | 4E | 4F  |                  |
| THIRD  | LINE | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B  | 1C | 1 D | 1E | 1F  |                  |
| FOURTH | LINE | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 5A | 5B  | 5C | 5D  | 5E | 5F  |                  |

### 9. MAXIMUM ABSOLUTE LIMIT

| Item                    | Symbol          | Standard value                             | Unit |
|-------------------------|-----------------|--------------------------------------------|------|
| Power supply voltage(1) | $V_{ m DD}$     | -0.3~+6.0                                  | V    |
| Power supply voltage(2) | $V_{LCD}$       | V <sub>DD</sub> -10.0~V <sub>DD</sub> +0.3 | V    |
| Input voltage           | V <sub>IN</sub> | -0.3~V <sub>DD</sub> +0.3                  | V    |
| Operating temperature   | Topr            | -20~+70                                    | °C   |
| Storage temperature     | Tstg            | -30~+80                                    | °C   |

<sup>\*</sup>Voltage greater than above may damage to the Circuit.

VDD>V1>V2>V3>V4>V5

#### 10. ELECTRICAL CHARACTERISTICS

#### 10-1 DC Characteristics

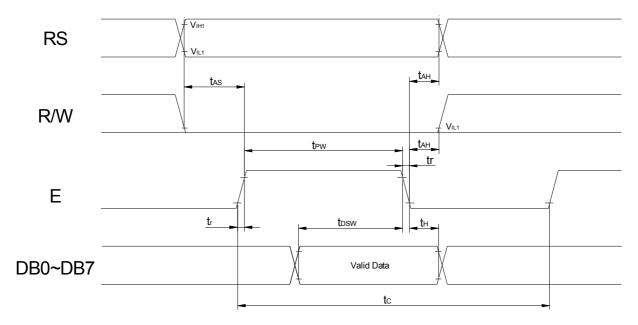
# 10-1-1 DC Characteristics(VDD=4.5V~5.5V,Ta=-20~+70°C)

| Item                | Cumbal           | St  | andard Val | ue  | Test                                                            | Unit  |  |
|---------------------|------------------|-----|------------|-----|-----------------------------------------------------------------|-------|--|
| Heili               | Symbol           | MIN | TYP MAX    |     | Condition                                                       | Oillt |  |
| Operating Voltage   | $V_{	ext{DD}}$   | 4.5 | 5.0        | 5.5 |                                                                 | V     |  |
| Supply Current      | Iddi             |     | 0.7        | 1.0 | Ceramic oscillation<br>fosc=250kHz                              |       |  |
|                     | I <sub>DD2</sub> |     | 0.4        | 0.6 | Resistor oscillation<br>external clock operation<br>fosc=270kHz | mA    |  |
| LCD Driving Voltage | VLCD             | 3.0 | 4.5        | 7.0 | V <sub>DD</sub> -V <sub>5</sub> (1/5,1/4 Bias)                  | V     |  |

# (CONTINUED) (VDD=2.7V~4.5V,Ta=-20~+70°C)

| Item                | Crimbal                   | St  | andard Val | ue  | Test                                                            | Unit |  |
|---------------------|---------------------------|-----|------------|-----|-----------------------------------------------------------------|------|--|
| Item                | Symbol                    | MIN | TYP        | MAX | Condition                                                       | Omt  |  |
| Operating Voltage   | $ m V_{DD}$               | 2.7 |            | 4.5 |                                                                 | V    |  |
| Supply Current      | $\mathbf{I}_{\text{DD1}}$ |     | 0.3        | 0.5 | Ceramic oscillation<br>fosc=250kHz                              |      |  |
|                     | I <sub>DD2</sub>          |     | 0.17       | 0.3 | Resistor oscillation<br>external clock operation<br>fosc=270kHz | mA   |  |
| LCD Driving Voltage | $V_{LCD}$                 | 3.0 |            | 7.0 | V <sub>DD</sub> -V <sub>5</sub> (1/5,1/4 Bias)                  | V    |  |

#### 10-2 AC Characteristics


10-2-1 Write mode (writing data from MPU to module)

| Item                      | Symbol                         | Min  | Тур | Max | Unit | Test PIN |
|---------------------------|--------------------------------|------|-----|-----|------|----------|
| E Cycle Time              | t <sub>C</sub>                 | 1200 |     |     | ns - | E        |
| E Rise/Fall Time          | t <sub>R</sub> ,t <sub>F</sub> |      |     | 25  | ns   | E        |
| E Pulse Width (High, Low) | t <sub>w</sub>                 | 140  |     |     | ns   | E        |
| R/W and RS Setup Time     | t <sub>su1</sub>               | 0    |     |     | -ns  | R/W,RS,E |
| R/W and RS Hold Time      | t <sub>H1</sub>                | 10   |     |     | ns   | R/W,RS,E |
| Data Setup Time           | t <sub>su2</sub>               | 40   |     |     | ns   | DB0~DB7  |
| Data Hold Time            | t <sub>H2</sub>                | 10   |     |     | ns   | DB0~DB7  |

10-2-2 Read Mode (Reading Data from module to MPU)

| Characteristic     | Symbol            | Min  | Type | Max | Unit | Test PIN |
|--------------------|-------------------|------|------|-----|------|----------|
| E Cycle Time       | $t_{\rm C}$       | 1200 |      |     | ns   | Е        |
| E Rise Time        | $t_{R}$           |      |      | 25  | ns   | Е        |
| E Fall Time        | $t_{ m F}$        |      |      | 25  | ns   | Е        |
| E Pulse width      | $tp_{\mathrm{W}}$ | 140  |      |     | ns   | Е        |
| Address Setup Time | $t_{AS}$          | 0    |      |     | ns   | R/W,RS,E |
| Address Hold Time  | $t_{AH}$          | 10   |      |     | ns   | R/W,RS,E |
| Data Setup Time    | $t_{ m DDR}$      |      |      | 100 | ns   | DB0~DB7  |
| Data Hold Time     | t <sub>H</sub>    | 10   |      |     | ns   | DB0~DB7  |

### 10-3-1 Write mode



#### 10-3-2 Read mode



# 11. CONTROL AND DISPLAY COMMAND

| Command                       | RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | Execution time (fosc=270KHz) | Remark                                                                                                                           |
|-------------------------------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Clear<br>Display              | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 1.52ms                       | Write"20H" to DDRAM. And set DDRAM address to "00H" from AC                                                                      |
| Return home                   | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | х   | 1.52ms                       | Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed. |
| Entry mode<br>Set             | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | I/D | S   | 37us                         | Sets cursor move direction and specifies display shift. These operations are performed during data write and read.               |
| Display<br>on/off<br>control  | 0  | 0   | 0   | 0   | 0   | 0   | 1   | D   | С   | В   | 37us                         | D=1: entire display on<br>C=1: cursor on<br>B=1: cursor position on                                                              |
| Cursor<br>or<br>Display Shift | 0  | 0   | 0   | 0   | 0   | 1   | S/C | R/L | X   | X   | 37us                         | Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.                                 |
| function<br>Set               | 0  | 0   | 0   | 0   | 1   | DL  | N   | F   | X   | X   | 37us                         | DL: interface data is 8/4 bits N: number of line is 2/1 F: font size is 5x11/5x8                                                 |
| Set CGRAM<br>address          | 0  | 0   | 0   | 1   | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | 37us                         | Set CGRAM address in address counter                                                                                             |
| Set DDRAM address             | 0  | 0   | 1   | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | 37us                         | Set DDRAM address in address counter                                                                                             |
| Read busy<br>flag&<br>address | 0  | 1   | BF  | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | 0us                          | Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.           |
| Write data to RAM             | 1  | 0   | D7  | D6  | D5  | D4  | D3  | D2  | D1  | D0  | 37us                         | Write data into internal RAM (DDRAM/CGRAM)                                                                                       |
| Read data<br>from RAM         | 1  | 1   | D7  | D6  | D5  | D4  | D3  | D2  | D1  | D0  | 37us                         | Read data from internal RAM (DDRAM / CGRAM)                                                                                      |

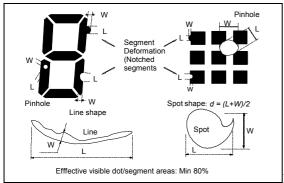
#### Note:

Be sure the ST7066U is not in the busy state (BF=00 before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to instruction table for the list of each instruction execution time.

# 12. CHARACTER GENERATOR ROM (ST7066U-0A-B)

| U ppea(48it) | 0000      | 0 0 0 1 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 10010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|--------------|-----------|---------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|
| 0 0 0 0 0    | CGRAM (1) |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 0 0 0 1      | (2)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 0010         | (3)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 0 0 1 1      | (4)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 0100         | (5)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 0 1 0 1      | (6)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 0110         | (7)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 0111         | (8)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 1000         | (1)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 1001         | (2)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 1010         | (3)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 1011         | (4)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 1100         | (5)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 1101         | (6)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 1110         | (7)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |
| 1111         | (8)       |         |      |      |      |      |      |      |      |      |       |      |      |      |      |      |

# 13. QUALITY DESCRIPTION


### **DEFECT SPECIFICATION:**

Specific type-related items are covered in this sheet.

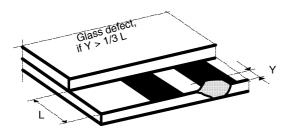
a: Table for Cosmetic defects

(Note: nc = not counted). Sizes and number of defects

(Max. Qty)



Examples/


Shapes

b: Glass defects

b1:Glass defects at contact ledge

| Defect Type              | Max. defect size [ $\mu$ m] d or L W | Max.<br>Quantity.   |
|--------------------------|--------------------------------------|---------------------|
| Black or White Spots     | d ≤ 100                              | nc                  |
|                          | 100 < d ≤ 200                        | 5                   |
| Black or White Lines     | <br>W ≤ 10                           | nc                  |
|                          | L ≤ 5000<br>W ≤ 30                   | 3                   |
|                          | L ≤ 2000<br>W ≤ 50                   | 2                   |
| Pinhole                  | $d \le 100$<br>$100 < d \le 200$     | nc<br>1/segme<br>nt |
| (Total                   | defects)                             | (5)                 |
| Segment Deformation      | W ≤ 100                              | nc                  |
| Bubble (e.g. under pola) | d ≤ 150                              | nc                  |
|                          | 200 < d ≤ 400                        | 3                   |
|                          | 400 < d ≤ 600                        | 1                   |

b2:Glass chipping in other areas shall not be in conflict



with the product's function.

### 14. MODULE ACCEPT QUALITY LEVEL (AQL)

14.1 AQL Standard Value: Fatal Defect = 0.1, Major Defect = 0.65; Minor Defect = 2.5.

14.2 Curtailed Inspection Scheme

| Type    | Batch Qty | inspection Qty | AQL value | pass | Reject                            |
|---------|-----------|----------------|-----------|------|-----------------------------------|
|         | 350PCS<   | 125pcs         | 0.1       | 0    | 1                                 |
|         | 1000PCS   |                | 0.65      | 2    | 3                                 |
|         |           |                | 2.5       | 7    | 8                                 |
|         | 200PCS<   | 80pcs          | 0.1       | 0    | 1                                 |
| module  | 350PCS    |                | 0.65      | 1    | 2                                 |
| product |           |                | 2.5       | 5    | 6                                 |
|         | <200PCS   | 32pcs          | 0.1       | 0    | 1                                 |
|         |           |                | 0.65      | 0    | 1                                 |
|         |           |                | 2.5       | 4    | 5                                 |
| Module  | <200PCS   | All            | /         | /    | The sample will be reject when    |
| sample  |           | inspected      |           |      | the fateful defect > 2pcs or main |
|         | >200PCS   | 125pcs         |           |      | defect > 5pcs.                    |

Notes: 1). Batch QTY is the production amount that Production department ship to QA department.

2). All of product will be inspected if the batch QTY less than inspected QTY.

3). Each batch fixed to be 500pcs.

#### 15. RELIABILITY TEST

Operating life time: Longer than 50000 hours (at room temperature without direct irradiation of sunlight) Reliability characteristics shall meet following requirements.

| TEMPERATURE TESTS               | NORMAL GRADE                               |
|---------------------------------|--------------------------------------------|
| High temperature storage        | +80°C x 96hrs                              |
|                                 | (Without Polarizer)                        |
| Low temperature storage         | -30°C x 96hrs                              |
| High temperature operation      | +70°C x 96hrs                              |
| Low temperature operation       | -20°C x 96hrs                              |
| High temperature, High humidity | +70°C x 95%RH x 96hrs                      |
|                                 | (Without Polarizer)                        |
| Thermal shock                   | -20°C x 30min. ← 10s                       |
| Vibration test                  | Frequency x Swing x Time 40Hz x 4mm x 4hrs |
| Drop test                       | Drop height x Times 1.0m x 6times          |

#### 16. LCD MODULES HANDLING PRECAUTIONS

- Please remove the protection foil of polarizer before using.
- The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- If the display panel is damaged and the liquid crystal substance inside it leaks out, do not get any in your mouth. If the substance come into contact with your skin or clothes promptly wash it off using soap and water.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarize carefully.
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
  - -Be sure to ground the body when handling the LCD module.
  - -Tools required for assembly, such as soldering irons, must be properly grounded.
  - -To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
  - -The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

#### Storage precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperatures below 0°C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

#### 17. OTHERS

- Liquid crystals solidify at low temperature (below the storage temperature range) leading to defective orientation of liquid crystal or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subjected to a strong shock at a low temperature.
- If the LCD modules have been operating for a long time showing the same display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. Abnormal operating status can be resumed to be normal condition by suspending use for some time. It should be noted that this phenomena does not adversely affect performance reliability.
- To minimize the performance degradation of the LCD modules resulting from caused by static electricity, etc. exercise care to avoid holding the following sections when handling the modules:
  - Exposed area of the printed circuit board
  - Terminal electrode sections