DISPLAY Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 20488 FGH-PW

Product Specification

Version: 10

GENERAL SPECIFICATION

MODULE NO.:

DEM 20488 FGH-PW

CUSTOMER P/N

VERSION NO.	CHANGE DESCRIPTION	DATE
0	ORIGINAL VERSION	08/03/2005
1	ADD PCB DRAWING AND DESCRIPTION	14/03/2005
2	CHANGED SERIES	11/04/2005
3	CHANGED PCB DRAWING AND DESCRIPTION	20/04/2005
4	CHANGED LCD TYPE	15/10/2005
5	ADD VERSION	22/12/2005
6	ADD VERSION	22/03/2007
7	CHANGED BACKLIGHT PARAMETER AND STORAGE TEMPERATURE	28/03/2007
8	MODIFY SECTION 6	24/04/2007
9	UPDATE PCB	23.08.2017
10	CHANGE MAXIMUM PARAMETER	08.01.2018

PREPARED BY: WJN DATE: 08.01.2018

APPROVED BY: MH DATE: 08.01.2018

CONTENTS

1. FUNCTIONS & FEATURES	1
2. MECHANICAL SPECIFICATIONS	2
3. EXTERNAL DIMENSIONS	3
4. BLOCK DIAGRAM	3
5. PIN ASSIGNMENT	4
6. PCB DRAWING AND DESCRIPTION	4
7. BACKLIGHT ELECTRICAL/OPTICAL SPECIFCATIONS	6
8. MAXIMUM ABSOLUTE POWER RATINGS (TA=-25°C)	6
9. DISPLAY DATA RAM (DDRAM)	6
10. ELECTRICAL CHARACTERISTICS	7
11. CONTROL AND DISPLAY COMMAND	9
12. STANDARD CHARACTER PATTERN (ST7066U-OA)	10
13. LCM INITIALIZING BY INSTRUCTION	11
14. QUALITY DESCRIPTION	13
15. MODULE ACCEPT QUALITY LEVEL (AQL)	14
16. RELIABILITY TEST	14
17. LCD MODULES HANDLING PRECAUTIONS	15
18. OTHERS	15

1. FUNCTIONS & FEATURES

MODULE	LCD TYPE
DEM 20488 FGH-PW	FSTN Transflective Positive Mode

• Viewing Direction : 6 o'clock

Driving Scheme : 1/16 Duty Cycle, 1/5 Bias

Power Supply Voltage : +5.0Volt (typ.) $V_{LCD}(V_{DD}-V_0)$: 4.5Volt (typ.)

• Display Format : 20 x 4 Characters (5x8 dots Format: 208 Kinds)

• Internal Memory : CGROM (10,080 Bits)

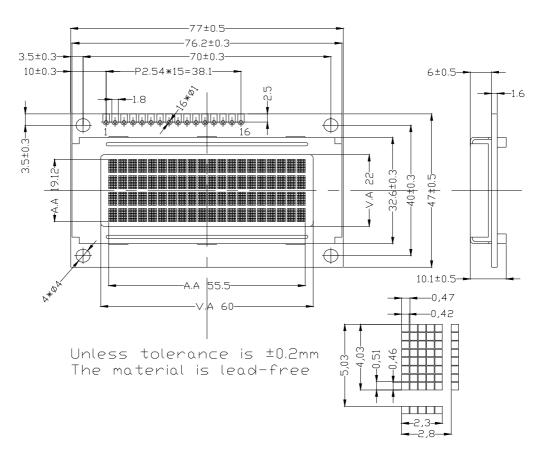
: CGRAM (64 x 8 Bits)

: DDRAM (80 x 8 Bits for Digits)

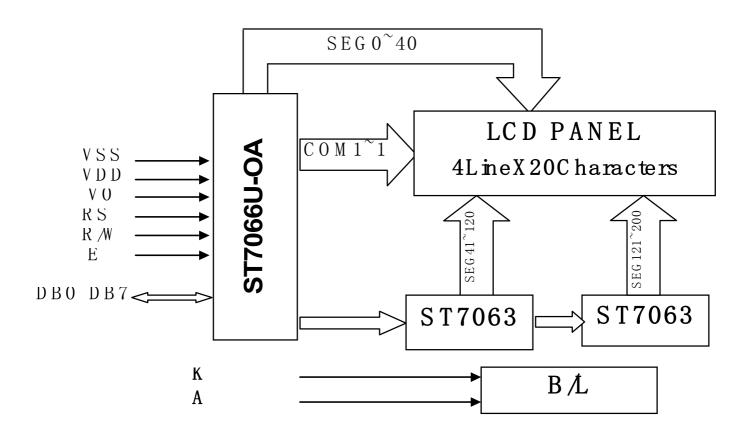
• CGROM : CGROM of the ST7066U-0A

• Interface : Easy Interface with a 4-bit or 8-bit MPU

Operating Temperature : -20°C to +70°C
 Storage Temperature : -30°C to +80°C


2. MECHANICAL SPECIFICATIONS

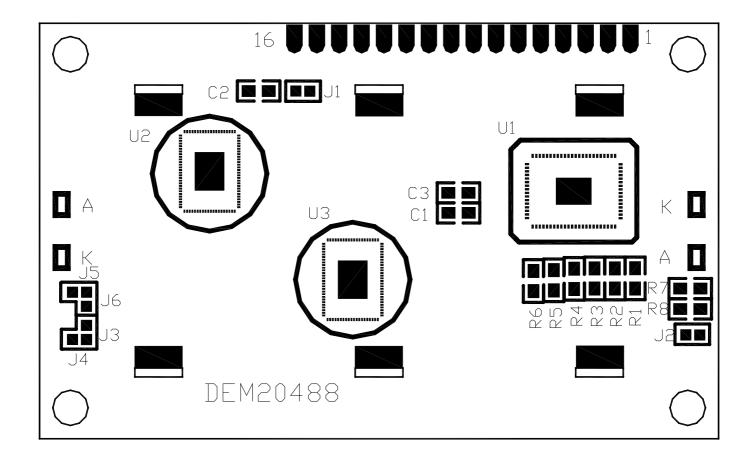
• Module Size : 77.00 x 47.00 x 10.10 mm


Character Pitch : 2.80 x 5.03 mm
 Character Size : 2.30 x 4.03 mm
 Dot Pitch : 0.47 x 0.51 mm
 Dot Size : 0.42 x 0.46 mm

• Dot Gap : 0.05 mm

3. EXTERNAL DIMENSIONS

4. BLOCK DIAGRAM



5. PIN ASSIGNMENT

Pin No.	Symbol	Function
1	VSS	Ground (0V)
2	$V_{ m DD}$	Power supply(V _{DD} >V _{SS})
3	V_0	Operating voltage for LCD
4	RS	Select registers. 0: Instruction register (for write) busy flag: address counter (for read); 1: Data register (for write and read)
5	R/W	Select read or write. 0: Write mode; 1: Read mode
6	Е	Start enable signal to read or write the data
7~10	DB0~DB3	Four low order bi-directional there-state data bus lines. Use for data transfer between the MPU and the LCD module. These four are not used during 4-bit operation.
11~14	DB4~DB7	Four high order bi-directional there-state data bus lines. Used for data transfer between the MPU and the LCD module. DB7 can be used as a busy flag.
15	LED(-)	Please refer to 6-2-1
16	LED(+)	Please refer to 6-2-1

6. PCB DRAWING AND DESCRIPTION

6.1 PCB DRAWING

6.2 DESCRIPTION:

6-2-1. The polarity of the pin 15 and the pin 16:

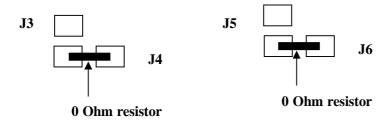
symbol	12 15	14 16	LED Polarity				
state	J3, J5	J4, J6	15 Pin	16 Pin			
Each solder-bridge	Each open	Each closed	Anode	Cathode			
Each solder-bridge	Each closed	Each open	Cathode	Anode			

Note: In application, J3=J5=0 Ohm, J2=J4=J6=open

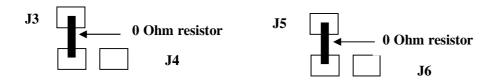
6-2-2. The metal-bezel is set on ground when the J1 is closed.

Note: In application module, J1=0 Ohm

6-2-3. The LED resistor can be bridged when the J2 is closed


Note: In application module, J2=open

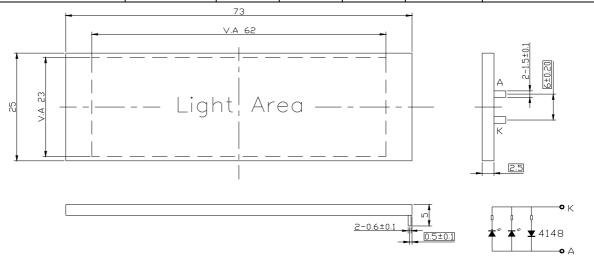
6-2-4. The R7 and the R8 are the LED resistor.


Note: In application module, R7= 100 Ohm, R8=open.

6.3 Example application

6-3-1. The 15 pin is the anode and the 16 pin is the cathode as following.

6-3-2. The 15 pin is the cathode and the 16 pin is the anode as following.



7. BACKLIGHT ELECTRICAL/OPTICAL SPECIFICATIONS

7.1 Backlight Characteristics Description

Electrical-Optical Characteristics

ITEM	SYMBOL	MIN.	TYP.	MAX	UNIT	CONDITION
Forward Current	If		15	20	mA	V _f =3.0V
Reverse Current	Ir		30		uA	$V_r=0.8V$
Peak Wave length	λР				nm	
Spectral Line Half Width	Δλ				nm	
Luminance	Lv		150		cd/m ²	V _f =3.0V

NOTE: 1.UNMARKED TOLERANCE IS ±0.30, 2.BACKLIGHT COLOR: WHITE, 3.THE MATERIAL IS LEAD-FREE.

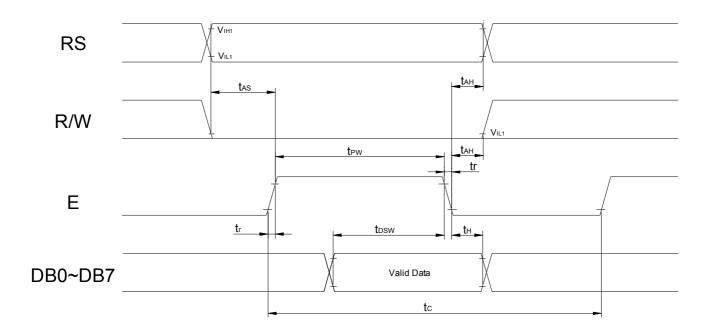
8. MAXIMUM ABSOLUTE POWER RATINGS (Ta = 25°C)

Item	Symbol	Standard value	Unit
Power supply voltage	V_{DD}	-0.3~+6.0	V
LCD Driver voltage	$V_{ m LCD}$	V _{DD} -10.0~V _{DD} +0.3	V
Input voltage	$ m V_{IN}$	-0.3~V _{DD} +0.3	V
Operating temperature	Topr	-20~+70	°C
Storage temperature	Tstg	-30~+80	°C

9. DISPLAY DATA RAM (DDRAM)

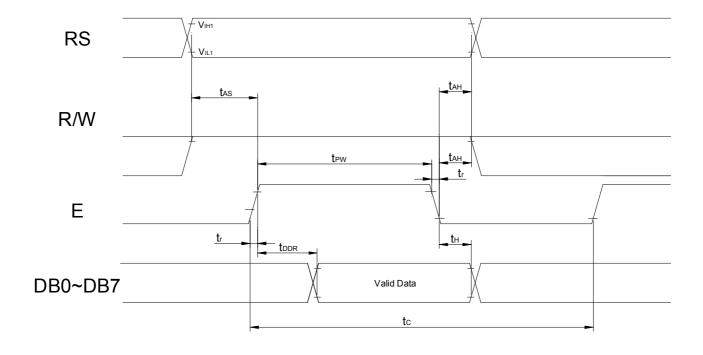
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20-	Display position
FIRST	LINE	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	OD	0E	0F	10	11	12	13	DDRAM Address
SECOND	LINE	40	41	42	43	44	45	46	47	48	49	4A	4 B	4C	4 D	4E	4F	50	51	52	53	
THIRD	LINE	14	15	16	17	18	19	1A	1B	1C	1 D	1E	1F	20	21	22	23	24	25	26	27	
FOURTH	LINE	54	55	56	57	58	59	5A	5В	5C	5D	5E	5F	60	61	62	63	64	65	66	67	

10. ELECTRICAL CHARACTERISTICS


10-1. DC Characteristics (V_{DD}=4.5V~5.5V)

T(Gl1	Star	ndard Va	lue	Test	TT .*4	
Item	Symbol	MIN	TYP	MAX	Condition	Unit	
Operating Voltage	V_{DD}	4.5	5.0	5.5		V	
LCD Voltage	V_{LCD}	3.0	4.5	7.0	V _{DD} – V5	V	
Supply Current	I_{DD}		0.2	0.5	V _{DD} =5V,fosc=270kHz	mA	

10-2. AC Characteristics (V_{DD}=5V)


10-2-1 Write Mode (Writing Data from MPU to Module)

Characteristic	Symbol	Min	Тур	Max	Unit	Test PIN
E Cycle Time	$t_{\rm C}$	1200			ns	Е
E Rise Time	t_{R}			25	ns	Е
E Fall Time	$t_{ m F}$			25	ns	Е
E Pulse width	tp _W	140			ns	Е
Address Setup Time	t_{AS}	0			ns	R/W,RS,E
Address Hold Time	t _{AH}	10			ns	R/W,RS,E
Data Setup Time	$T_{ m DSW}$	40			ns	DB0~DB7
Data Hold Time	t _H	10			ns	DB0~DB7

10-2-2 Read Mode (Reading Data from Module to MPU)

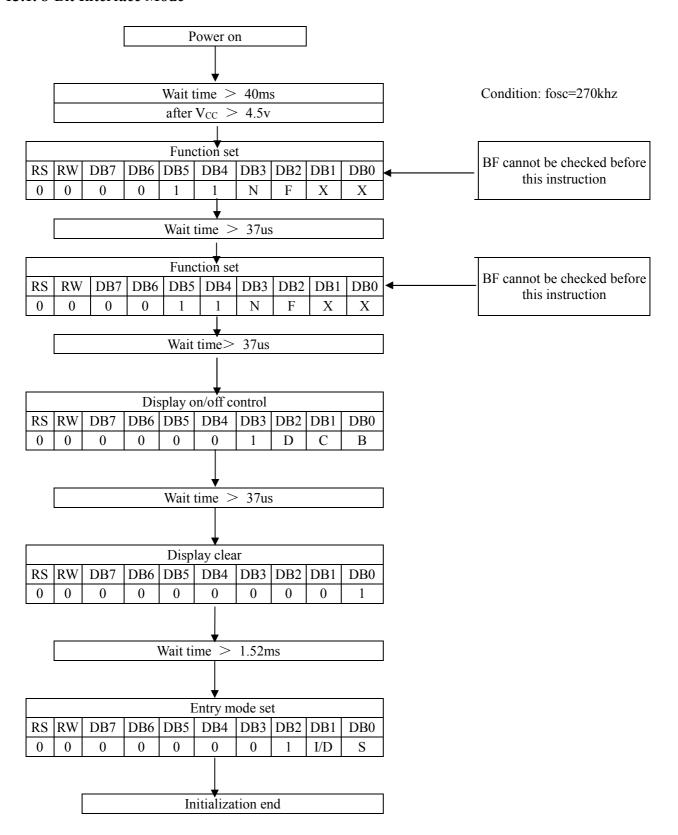
Characteristic	Symbol	Min	Тур	Max	Unit	Test PIN
E Cycle Time	$t_{\rm C}$	1200			ns	E
E Rise Time	t_{R}			25	ns	E
E Fall Time	t_{F}			25	ns	E
E Pulse width	tpw	140			ns	E
Address Setup Time	t _{AS}	0			ns	R/W,RS,E
Address Hold Time	t _{AH}	10			ns	R/W,RS,E
Data Setup Time	t_{DDR}			100	ns	DB0~DB7
Data Hold Time	t_{H}	10			ns	DB0~DB7

11. CONTROL AND DISPLAY COMMAND

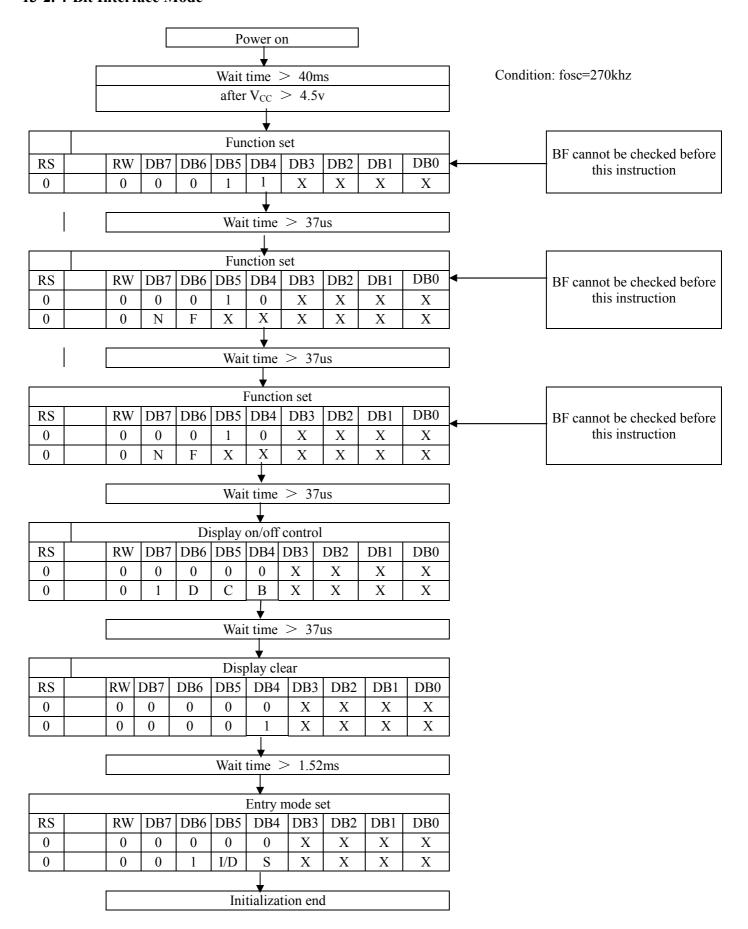
Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Execution time (fosc=270KHz)	Remark
Clear Display	0	0	0	0	0	0	0	0	0	1	1.52ms	Write"20H" to DDRAM. And set DDRAM address to "00H" from AC
Return home	0	0	0	0	0	0	0	0	1	х	1.52ms	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.
Entry mode Set	0	0	0	0	0	0	0	1	I/D	S	37us	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.
Display on/off control	0	0	0	0	0	0	1	D	С	В	37us	D=1: entire display on C=1: cursor on B=1: cursor position on
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	X	X	37us	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.
function Set	0	0	0	0	1	DL	N	F	X	X	37us	DL: interface data is 8/4 bits N: number of line is 2/1 F: font size is 5x11/5x8
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	37us	Set CGRAM address in address counter
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	37us	Set DDRAM address in address counter
Read busy flag& address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	0us	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	37us	Write data into internal RAM (DDRAM/CGRAM)
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	37us	Read data from internal RAM (DDRAM / CGRAM)

Note:

Be sure the ST7066U is not is not in the busy state (BF=00 before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to instruction table for the list of each instruction execution time.


12. STANDARD CHARACTER PATTERN (ST7066U-OA)

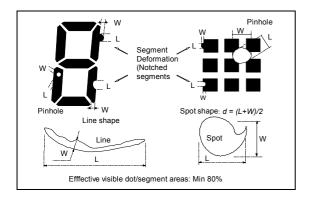
Upper(4bit)	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	10010	1011	1100	1101	1110	1111
Lowerr(4bit) 0000	CG RAM (1)															
0001	(2)															
0010	(3)															
0011	(4)															
0100	(5)															
0101	(6)															
0110	(7)															
0111	(8)															
1000	(1)															
1001	(2)															
1010	(3)															
1011	(4)															
1100	(5)															
1101	(6)															
1110	(7)															
1111	(8)															


Version:8 Page: 10

13. LCM INITIALIZING BY INSTRUCTION

13.1. 8-Bit Interface Mode

13-2. 4-Bit Interface Mode

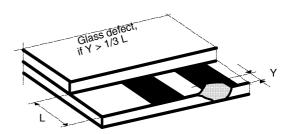


14. QUALITY DESCRIPTION

DEFECT SPECIFICATION:

Specific type-related items are covered in this sheet.

a: Table for Cosmetic defects(Note: nc = not counted).Sizes and number of defects(Max. Qty)


Examples/ Shapes

b: Glass defects

b1:Glass defects at contact ledge

Defect Type	Max. defect size [μm] d or L W	Max. Quantity
Black or White Spots	d ≤ 100	nc
	100< d ≤ 200	5
Black or White Lines	 W ≤ 10	nc
	L ≤ 5000 W ≤ 30	3
	L ≤ 2000 W ≤ 50	2
Pinhole	d ≤ 100 100< d ≤ 200	nc 1/segm ent
(Total o	(5)	
Segment Deformation	W ≤ 100	nc
Bubble (e.g. under pola)	d ≤ 150	nc
	200< d ≤ 400	3
	400< d ≤ 600	1

b2:Glass chipping in other areas shall not be in conflict with the product's function.

15. MODULE ACCEPT QUALITY LEVEL (AQL)

15.1 AQL Standard Value: Fatal Defect =0.1, Major Defect=0.65; Minor Defect =2.5.

15.2 Curtailed Inspection Scheme

Туре	Batch Qty	inspection Qty	inspection rate	AQL value	pass	Reject
	250DCC			0.1	0	1
	350PCS < 1000PCS	125pcs	>25%	0.65	2	3
	TOUUPCS			2.5	7	8
module product	200PCS < 350PCS			0.1	0	1
		80pcs	>23%	0.65	1	2
	330PCS			2.5	5	6
	<200PCS	32pcs		0.1	0	1
			>16%	0.65	0	1
		•		2.5	4	5
Module	<200PCS	All			/	The sample will be reject when
	~200PCS	inspected	/	/		the fateful defect>2pcs or main
sample	>200PCS	125pcs				defect>5pcs.

Notes: 1). Batch QTY is the production amount that Production department ship to QA department.

2). All of product will be inspected if the batch QTY less than inspected QTY.

3). Each batch fixed to be 500pcs.

16. RELIABILITY TEST

Operating life time: Longer than 50000 hours (at room temperature without direct irradiation of sunlight) Reliability characteristics shall meet following requirements.

TEMPERATURE TESTS	NORMAL GRADE					
High Temperature Storage	+80°C x 96hrs					
riigii teinperature Storage	(Without Polarizer)					
Low Temperature Storage	-30°C x 96hrs					
High Temperature Operation	+70°C x 96hrs					
Low Temperature Operation	-20°C x 96hrs					
High Temperature, High Humidity	+70°C x 95%RH x 96hrs					
Tright Temperature, Tright Trumbury	(Without Polarizer)					
Thermal Shock	-20°C x 30min. 10s					
Vibration Test	Frequency x Swing x Time 40Hz x 4mm x 4hrs					
Drop Test	Drop height x Times 1.0m x 6times					

17. LCD MODULES HANDLING PRECAUTIONS

- Please remove the protection foil of polarizer before using.
- The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- If the display panel is damaged and the liquid crystal substance inside it leaks out, do not get any in your mouth. If the substance come into contact with your skin or clothes promptly wash it off using soap and water.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarize carefully.
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - -Be sure to ground the body when handling the LCD module.
 - -Tools required for assembly, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - -The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.
- Storage precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperatures below 0°C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

18. OTHERS

- Liquid crystals solidify at low temperature (below the storage temperature range) leading to defective orientation of liquid crystal or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subjected to a strong shock at a low temperature.
- If the LCD modules have been operating for a long time showing the same display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. Abnormal operating status can be resumed to be normal condition by suspending use for some time. It should be noted that this phenomena does not adversely affect performance reliability.
- To minimize the performance degradation of the LCD modules resulting from caused by static electricity, etc. exercise care to avoid holding the following sections when handling the modules:
 - Exposed area of the printed circuit board
 - Terminal electrode sections