Display Elektronik GmbH

DATA SHEET

STANDARD OLED/PLED

DEP 256064B-W

Product Specification

Version: 5

05.02.2013

History of Version

Contents	Date	Note
NEW VERSION	22.11.2008	SPEC.
Add contrast setting	09.11.2011	
UPDATE Quality Assurance · Reliability ADD Precautions for Handling · Precautions for Electrical · Precautions for Storage	17.08.2012	
Modify Cover page	17.10.2012	
Modify Quality Assurance	05.02.2013	
	Add contrast setting UPDATE Quality Assurance Reliability ADD Precautions for Handling Precautions for Electrical Precautions for Storage Modify Cover page	Add contrast setting Op.11.2011 UPDATE Quality Assurance Reliability ADD Precautions for Handling Precautions for Electrical Precautions for Storage Modify Cover page 17.10.2012

CONTENTS

- 1. Numbering System
- 2. General Specification
- 3. Absolute Maximum Rating
- 4. Electrical Characteristics
- 5. Optical Characteristics
- 6. Interface Pin Function
- 7. Power Supply For OLED Module And Panel Layout Diagram
- 8. Drawing
- 9. SSD1322controller data
 - 9.1 Timing Characteristics
 - 9.2 Display Control Instruction
 - 9.3 Power ON / OFF Sequence & Application Circuit
- 10. Quality Assurance
 - 10.1 Inspection conditions
 - 10.2 Inspection Parameters
 - 10.3 WARRANTY POLICY
 - 10.4 MTBF
- 11. Reliability
- 12. Precautions for Handling
- 13. Precautions for Electrical
 - 13.1 Design using the settings in the specification
 - 13.2 Maximum Ratings
 - 13.3 Power on/off procedure
 - 13.4 Power savings
 - 13.5 Residual Image (Image Sticking)
- 14. Precautions for Storage

1. Numbering System

2. General Specification

(1) Mechanical Dimension

Item	Standard Value	Unit
Number of dots	256x64	dots
Module dimension (L*W*H)	87.4*64.5*2.01	mm
Active area	79.084*19.756	mm
Dot size	0.289(W)×0.289(H)	mm
Dot pitch	0.309(W)×0.309 (H)	mm
Color	White	

(2) Controller IC: SSD1322 Controller

(3) Temperature Range

Operating	-40 ~ +70°C
Storage	-40 ~ +85℃

3. Absolute Maximum Ratings

Item	Symbol	Condition	Min	Тур	Max	Unit
Operating Temperature	ТОР		-40	_	+85	$^{\circ}\!\mathbb{C}$
Storage Temperature	TST		-40	_	+85	$^{\circ}$ C
Humidity					85	%
Supply Voltage For Logic	VDD		2.4	_	3.5	V
Supply Voltage For Panel	VCC		10		20	
Operating lift time		80cd/m², 50% checkerboard	13000(1)			Hrs
Operating lift time		70cd/m², 50% checkerboard	16000(2)			Hrs
Operating lift time		60cd/m², 50% checkerboard	19000(3)			Hrs

(A) Under VCC = 14V, Ta = 25°C, 50% RH.

(B) Life time is defined the amount of time when the luminance has decayed to less than 50% of the initial measured luminance.

4. Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}	_	2.4	3.3	3.5	V
Supply Voltage For Panel	Vcc-V _{SS}	_	13.5	14	14.5	V
Input High Vol	V _{IH}	_	$0.8V_{\mathrm{DD}}$	_	V_{DD}	V
Input Low Vol	V _{IL}	_	0	_	$0.2V_{DD}$	V
Output High Vol	V _{OH}	_	$0.9V_{DD}$	_	V_{DD}	V
Output Low Vol.	V _{OL}	_	0	_		V
Supply Current For Logic	OL		-		DD .	
(with built-in positive voltage)	I_{DD}	_	_	270	_	mA

5. Optical Characteristics

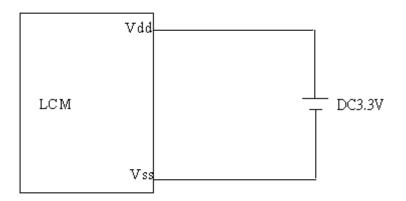
Item	Min.	Тур.	Max.	Unit
View Angle	160	_	_	deg
Dark Room contrast	2000:1	_	_	_
Response Time	_	10	_	us

6. Interface Pin Function

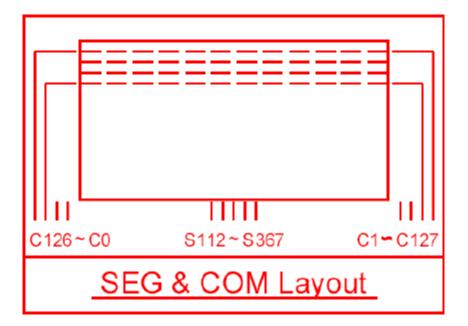
Pin No.	Symbol	Level	Description
1	Vss	0V	Ground
2	Vdd	3.3V	Supply voltage for logic
3	CS	H/L	Chip select pin
4	/RES	H/L	Hardware Reset pin
5	D/C	H/L	H: Data; L: Command.
6	WR	H/L	write signal pin
7	RD	H/L	Read signal pin
8	DB0	H/L	Data bus line
9	DB1	H/L	Data bus line
10	DB2	H/L	Data bus line
11	DB3	H/L	Data bus line
12	DB4	H/L	Data bus line
13	DB5	H/L	Data bus line
14	DB6	H/L	Data bus line
15	DB7	H/L	Data bus line
16	DISF VCC	H/L H	DISF: VCC Voltage ON/OFF VCC: Supply Voltage For OLED

Default: Parallel 8-Bit 8080 Interface

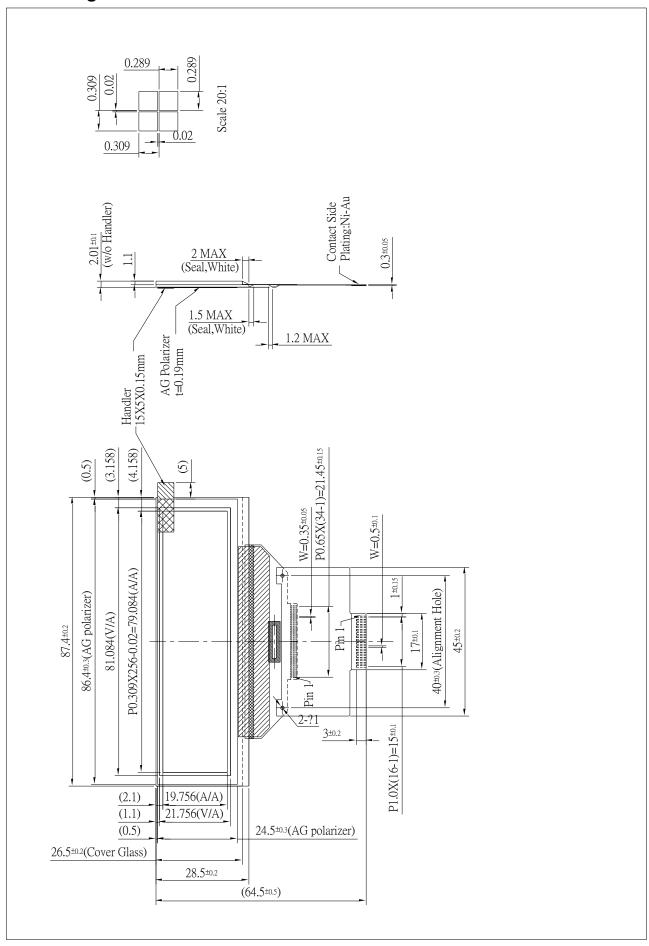
68j: Parallel 8-Bit 6800 Interface Special Code


20i : SPI Interface Special Code

MCU interface assignment under different bus interface mode

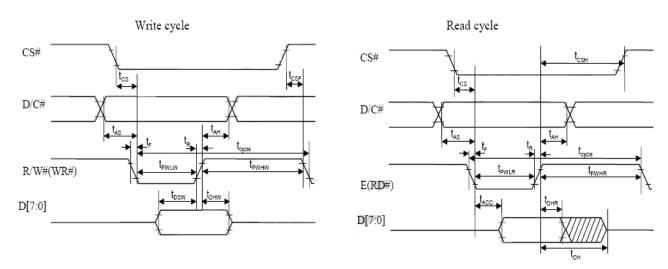

Pin Name Bus	Data/C	Data/Command Interface								Control Signal				
Interface	D 7	D6	D5	D4	D3	D2	D1	D 0	E	R/W#	CS#	D/C#	RES#	
8-bit 8080		•		D[7:0]	•			RD#	WR#	CS#	D/C#	RES#	
8-bit 6800				D[7:0]				Е	R/W#	CS#	D/C#	RES#	
3-wire SPI	Tie LOW					NC	SDIN	SCLK	Tie L	OW	CS#	Tie LOW	RES#	
4-wire SPI	Tie LO	W				NC	SDIN	SCLK	Tie L	OW	CS#	D/C#	RES#	

7. Power Supply For OLED Module And Panel Layout Diagram


OLED Module operating on "DC 3.3V" input with built-in positive voltage

Panel Layout Diagram

8. Drawing

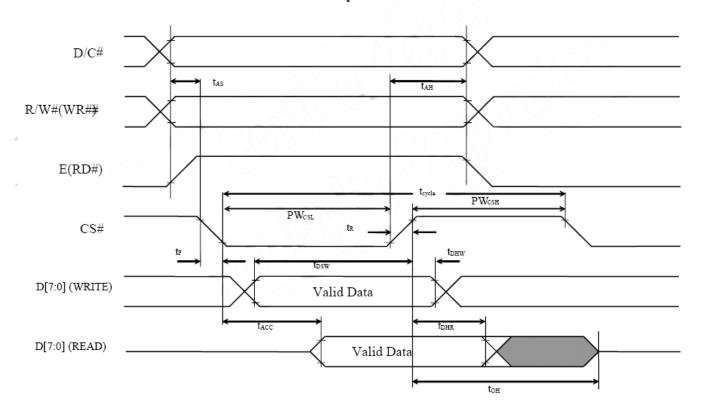

9. SSD1322 controller data

9.1 Timing Characteristics .8080 MPU Interface

 $(\underline{V_{\text{DD}}}$ - V_{SS} = 2.4 to 2.6V, $V_{\text{DDIO}}\text{=}1.6\text{V},\,V_{\text{CI}}$ = 3.3V, T_{A} = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
t _{PWLR}	Read Low Time	150	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
t _{PWHR}	Read High Time	60	-	-	ns
t _{PWHW}	Write High Time	60	-	-	ns
t_R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns
t _{CS}	Chip select setup time	0	-	-	ns
t _{CSH}	Chip select hold time to read signal	0	-	-	ns
t _{CSF}	Chip select hold time	20	-	-	ns

8080-series MCU parallel interface characteristics

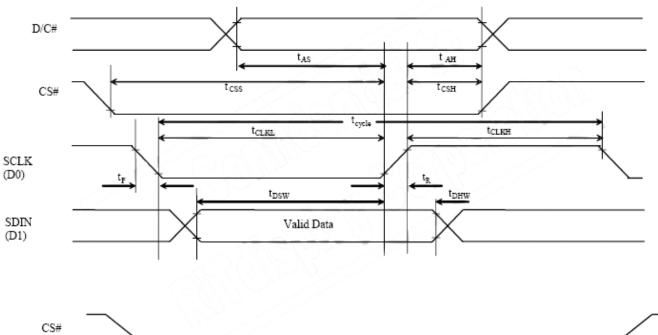


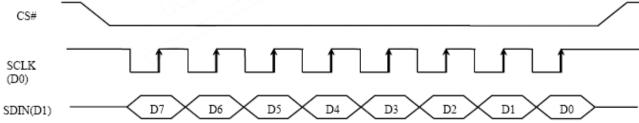
6800 MPU Interface

 $(V_{DD}$ - V_{SS} = 2.4 to 2.6V, V_{DDIO} =1.6V, V_{CI} = 3.3V, T_A = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
$t_{ m DSW}$	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
	Chip Select Low Pulse Width (read)	120			
PW_{CSL}	Chip Select Low Pulse Width (write)	60	-	-	ns
DW	Chip Select High Pulse Width (read)	60			***
PW_{CSH}	Chip Select High Pulse Width (write)	60	-	-	ns
t _R	Rise Time	-	, -	15	ns
t _F	Fall Time		/ -	15	ns

$6800\hbox{-series MCU parallel interface characteristics}$

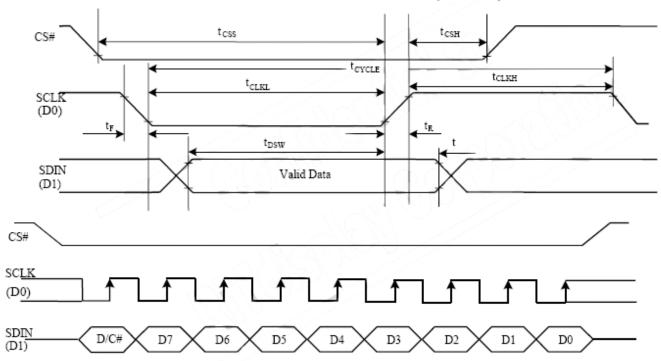



Serial Interface(4-wire SPI)

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
t _{AS}	Address Setup Time	15	-	-	ns
t _{AH}	Address Hold Time	15	-	-	ns
t _{CSS}	Chip Select Setup Time	20	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t_{DSW}	Write Data Setup Time	15	-	-	ns
t _{DHW}	Write Data Hold Time	15	-	1	ns
t _{CLKL}	Clock Low Time	20	-	-	ns
t _{CLKH}	Clock High Time	20	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\mathbf{F}}$	Fall Time	-	- 🖂	15	ns

Serial interface characteristics (4-wire SPI)



Serial Interface (3-wire SPI)

 $(V_{DD}$ - V_{SS} = 2.4 to 2.6V, V_{DDIO} =1.6V, V_{CI} = 3.3V, T_A = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
t _{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	15	-	-	ns
t _{CSS}	Chip Select Setup Time	20	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t _{DSW}	Write Data Setup Time	15	-	-	ns
t _{DHW}	Write Data Hold Time	15	-	-	ns
t _{CLKL}	Clock Low Time	20	-	-	ns
t _{CLKH}	Clock High Time	20	-	-	ns
t_R	Rise Time	-	-	15	ns
t _F	Fall Time	-	- ,/^,	15	ns

Serial interface characteristics (3-wire SPI)

9.2 Display Control Instruction

(D/C#=0, R/W#(WR#) = 0, E(RD#)=1) unless specific setting is stated)

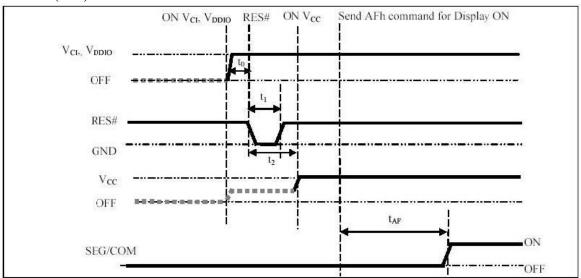
D/C#	Hex	D 7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	00	0	0	0	0	0	0	0	0		This command is sent to enable the Gray Scale table setting (command B8h)
0 1 1	15 A[6:0] B[6:0]	0 * *	0 A ₆ B ₆	0 A ₅ B ₅	1 A ₄ B ₄	0 A ₃ B ₃	1 A ₂ B ₂	0 A ₁ B ₁	1 A ₀ B ₀	Address	Set Column start and end address A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=119] Range from 0 to 119
0	5C	0	1	0	1	1	1	0	0	Write RAM Command	Enable MCU to write Data into RAM
0	5D	0	1	0	1	1	1	0	1	Read RAM Command	Enable MCU to read Data from RAM
0 1 1	75 A[6:0] B[6:0]	0 *	1 A ₆ B ₆	1 A ₅ B ₅	1 A ₄ B ₄	0 A ₃ B ₃	1 A ₂ B ₂	0 A ₁ B ₁	1 A ₀ B ₀	Address	Set Row start and end address A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127
0 1 1	A0 A[7:0] B[4]	1 0 *	0	1 As 0	0 A ₄ B ₄	0000	0 A ₂ 0	0 A ₁ 0	0 A ₀ 1	Set Re-map and Dual COM Line mode	
0	A1 A[6:0]	1 *	0 A ₆	1 A ₅	0 A4	0 A ₃	0 A ₂	0 A ₁	l A ₀		Set display RAM display start line register from 0-127 Display start line register is reset to 00h after RESET

D/C#	Hex	D 7	D6	D5	D4	D3	D2	D2	D 0	Command	Description		
0	A2	1	0	1	0	0	0	1	0		Set vertical scroll by COM from 0-127		
1	A[6:0]	*	A_6	A ₅	Α,	A ₃	A ₂	A_1	A ₀		The value is reset to 00H after RESET		
0	A4~A7	1	0	1	0	0	X_2	X_1	X_0		A4h = Entire Display OFF, all pixels turns OFF in GS level 0		
											A5h = Entire Display ON, all pixels turns ON in GS level 15		
										Set Display Mode	A6h = Normal Display [reset]		
											A7h = Inverse Display (GS0 → GS15, GS1 → GS14, GS2 → GS13,)		
0	A8 A[6:0]	1 0	0 A ₆	l As	0 A ₄	1 A ₃	0 A ₂	0 A ₁	0 A ₀		This command turns ON partial mode. The partial mode display area is defined by the following two parameters,		
1	B[6:0]	0	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	Enable Partial Display	A[6:0]: Address of start row in the display area		
											B[6:0]: Address of end row in the display area,		
											where B[6:0] must be ≥ A[6:0]		
0	A9	1	0	1	0	1	0	0	1	Exit Partial Display	This command is sent to exit the Partial Display mode		
0	AB	1	0	1	0	1	0	1	1	Function	A[0]=0b, Select external V _{DD}		
1	A[0]	0	0	0	0	0	0	0	A ₀	Selection	A[0]=1b, Enable internal V _{DO} regulator [reset]		
0	AE~AF	1	0	1	0	1	1	1	X_0	Set Sleep mode	AEh = Sleep mode ON (Display OFF)		
							K			ON/OFF	AFh = Sleep mode OFF (Display ON)		
0	B1 A[7:0]	1 A ₇	0 A ₆	l As	1 A4	0 A ₃	0 A ₂	0 A ₁	l Ao	1000	A[3:0] Phase 1 period (reset phase length) of 5~31 DCLK(s) clocks as follow:		
									λn		A[3:0] Phase 1 period		
							K		1/2	93/2/2	0000 invalid 0001 invalid		
							X/		Say Say		0010 5 DCLKs		
											0011 7 DCLKs 0100 9 DCLKs [reset]		
											: :		
						<					1111 31 DCLKs		
										Set Phase Length	A[7:4] Phase 2 period (first pre-charge phase length) of 3~15 DCLK(s) clocks as follow:		
											A[7:4] Phase 2 period		
											0000 invalid		
											0001 invalid 0010 invalid		
											0010 invalid 0011 3 DCLKs		
											: : 0111 7 DCLKs [reset]		
											: :		
											1111 15 DCLKs		

D/C#	Hex	D7	D6	D5	D4	D3	D2	D2	D 0	Command	Description	
0	В3	1	0	1	1	0	0	1	1		A[3:0] [reset=0], divide by DIVSET where	
1	A[7:0]	A,	A_6	A,	A,	A3	A_2	A_1	Ao			
	11[7.0]	,		5	4	3	2		220		A[3:0] DIVSET	
											0000 divide by 1	
											0001 divide by 2	
											0010 divide by 4	
											0011 divide by 8	
										Set Front Clock	0100 divide by 16 0101 divide by 32	
										Divider /		
										Oscillator	0110 divide by 64 0111 divide by 128	
										Frequency	1000 divide by 256	
											1000 divide by 236	
											1001 divide by 1024	
											>=1010 divide by 1024 >=1011 invalid	
											2-1011 invalid	
											A[7:4] Oscillator frequency, frequency increases as level increases [reset=1100b]	
0	B4	1	0	1	1	0	1	0	0		A[1:0] = 00b: Enable external VSL	
1	A[1:0]	1	0	1	0	0	0	A_1	A_0		A[1:0] = 10b: Internal VSL [reset]	
1	B[7:3]	В,	B_{ϵ}	B _s	B ₄	В	1	0	1	Display	P[7, 2] - 11111, F-1 11 - CS II - 1 II	
				,	1	,				Ennancement A	B[7:3] = 11111b: Enhanced low GS display quality B[7:3] = 10110b: Normal [reset]	
										27 <i>(2)</i> []]	D[7.5] - 101100. Normal [reset]	
0	B 5	1	0	1	1	0	1	0	1	TONO Y	A[1:0] GPIO0: 00 pin HiZ, Input disabled	
1	A[3:0]	*	*	*	*	A ₃	A_2	A ₁	A _o		01 pin HiZ, Input enabled	
-	11[0.0]					3	್			200	10 pin output LOW [reset]	
					per de la companya della companya de				0.00		11 pin output HIGH	
				1			1)		Set GPIO	A[3:2] GPIO1: 00 pin HiZ, Input disabled	
											01 pin HiZ, Input enabled	
										~// (X: 7)	10 pin output LOW [reset]	
									à(::	7000	11 pin output HIGH	
							di	Þſ.		9)\(`	• •	
0	B6	1	0	1	1	0	1	1	0		A[3:0] Second Pre-charge period	
1	A[3:0]	*	*	*	*	A_3	A_2	A_1	A_0	/// · ·	0000b 0 delk	
						1				Set Second	0001b 1 delk	
										Precharge Period	1000b 8 dclks [reset]	
										renou		
											1111b 15 delks	
				L	<u> </u>	V .						
0	В8	1	0	1	1	1	0	0	0		The next 15 data bytes define Gray Scale (GS) Table by	
1	A1[7:0]	Al,	Al_6	Als	Al.	Al,	Al_2	Al_1	Al_0		setting the gray scale pulse width in unit of DCLK's	
1	A2[7:0]		$A2_6$	A25	A2.	A2 ₃	A22	A2 ₁	A20		(ranges from 0d ~ 180d)	
1										Set Grav Scale	A1[7:0]: Gamma Sotting for GS1	
1											A1[7:0]: Gamma Setting for GS1, A2[7:0]: Gamma Setting for GS2,	
1	_										raz[7.0]. Gamma Setting for G52,	
1 1	A14[7:0]	A14-	A14.		A14.	A14.	A14.		A14 ₀		A14[7:0]: Gamma Setting for GS14,	
1 1	A15[7:0]								A15 ₀		A15[7:0]: Gamma Setting for GS15	
1	A13[/:0]	АЮγ	Aιβ	A135	A134	AΩ	ΑLЭŞ	AL)	A130			

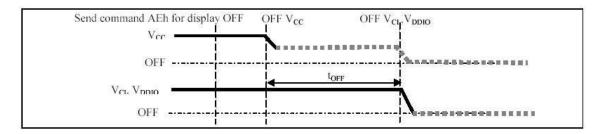
D /C#	Hex	D 7	D6	D5	D4	D3	D2	D2	D0	Command	Description		
											Note (3) 0 ≤ Setting of GS1 < Setting of GS2 < Setting of GS3 < Setting of GS14 < Setting of GS15 Refer to Section 8.8 for details (2) The setting must be followed by the Enable Gray Scale Table command (00h)		
0	В9	1	0	1	1	1	0	0	1	Select Default Linear Gray Scale table	The default Linear Gray Scale table is set in unit of DCLK's as follow GS0 level pulse width = 0; GS1 level pulse width = 0; GS2 level pulse width = 8; GS3 level pulse width = 16; :: GS14 level pulse width = 104; GS15 level pulse width = 112 Refer to Section 8.8 for details		
0	BB A[4:0]	1 *	0 *	1 *	1 A ₄	1 A ₃	0 A ₂	1 A ₁	1 A ₀	Set Pre-charge voltage	A[5:1] Hex code pre-charge voltage		
0 1	BE A[3:0]	1 *	0 *	1 *	1 *	1 A ₃	1 A ₂	1 A ₁	0 A ₀	Set V _{OOMH}	Set COM deselect voltage level [reset = 04h] A[3:0] = A[2:0] Hex code V COMH 0000 00h 0.72 x V CC :		
0	C1 A[7:0]	1 A ₇	l A ₆	0 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	l A ₀	Set Contrast Current	A[7:0]: Contrast current value, range:00h~FFh, i.e. 256 steps for I _{SEG} current [reset = 7Fh]		
0	C7 A[3:0]	1 *	1 *	0 *	0 *	0 A ₃	1 A ₂	1 A ₁	1 A ₀	Master Contrast Current Control	1 .		
0	CA A[6:0]	1 *	1 A ₆	0 As	0 A4	l A ₃	0 A ₂	1 A ₁	0 A ₀	Set MUX Ratio	A[6:0]: Set MUX ratio from 16MUX ~ 128MUX A[6:0] = 15d represents 16MUX : A[6:0] = 127d represents 128MUX [reset]		

D /C#	Hex	D 7	D6	D5	D4	D3	D2	D2	D0	Command	Description
0	D1 A[5:4]	1	0	0 A ₅	1 A4	0	0 0	0	0		A[5:4] = 00b: Reserved A[5:4] = 10b: Normal [reset]
1	20	0	0	1	0	0	0	0	0		A[3:+] = 100: Normal [reset] A[2]: MCU protection status [reset = 12h]
0	FD A[2]	0	0	0	1	0	A_2	0	0		A[2]: MCO protection status [reset = 12n]
•	A[2]				•		1.2	•		Set Command Lock	A[2] = 0b, Unlock OLED driver IC MCU interface from entering command [reset] A[2] = 1b, Lock OLED driver IC MCU interface from entering command
											(1) The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command


Note
(1) *** stands for "Don't care".

9.3 Power ON / OFF Sequence & Application Circuit

POWER ON / OFF SEQUENCE


Power ON sequence:

- 1. Power ON VDD
- 2. After VDD become stable, set wait time at least 1ms (t0) for internal VDD become stable. Then set RES# pin LOW (logic low) for at least 100us (t1) (4) and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 100us (t2). Then Power ON VCC.(1)
- 4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 200ms (tAF).

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF VCC.(1), (2)
- 3. Wait for tOFF. Power OFF VCI, VDDIO. (where Minimum tOFF=80ms (3), Typical tOFF=100ms)

Note:

- (1) Since an ESD protection circuit is connected between VCI, VDDIO and VCC, VCC becomes lower than VCI whenever VCI, VDDIO is ON and VCC is OFF as shown in the dotted line of VCC.
- (2) VCC should be kept float (disable) when it is OFF.
- (3) VCI, VDDIO should not be Power OFF before VCC Power OFF.
- (4) The register values are reset after t1.
- (5) Power pins (VCI, VCC) can never be pulled to ground under any circumstance.

10 Quality Assurance

10.1 Inspection conditions

1. The inspection and meaurement are performed under the following conditions,

2. unless otherwise specified.

Temperature: 25±5°C
 Humidity: 50±10%R.H.

5. Distance between the panel and eyes of the inspector≥30cm

10.2 Inspection Parameters

<u> </u>	arameters			
Severity	Inspection Item	Defect	Remark	
		(1) Non-displaying		
	1. Panel	(2) Line defects		
	I. Fallel	(3) Malfunction		
Major		(4) Glass cracked		
Defect	2. Film	(1) Film dimension out of	Can not be	
	2.1 11111	specification	assembled	
	3. Dimension	(1) Outline dimension out		
	o. Dimension	of specification		
		(1) Glass scratch		
	1. Panel	(2) Glass cutting NG		
		(3) Glass chip		
		(1) Polarizer scratch	Annogrange	
Minor	2. Polarizer	(2) Stains on surface	Appearance	
Defect		(3) Polarizer bubbles	defect	
	2 Diaplaying	(1) Dim spot \	ueleci	
	3. Displaying	3. Displaying Bright spot \ dust		
	4. Film	(1) Damage		
		(2) Foreign material		

Description		Criterion			AQL		
	Width (mm)	Length (mm) L	numbe piec permi	es itted			
1. Glass scratch	W≦0.03 0.03< W≦0.05	lgnore L≦3	lgno 3	ore	Minor		
	0.05< W = 0.05		Nor	ne			
	beyond A.A.		Igno	ore			
2. Polarizer bubble	Size $ \begin{array}{c} \Phi \leq 0.2 \\ 0.2 < \Phi \leq 0.5 \\ 0.5 < \Phi \\ \text{beyond A.A.} \end{array} $	numbe pieces per Ignor 2 0 Ignor	mitted re		Minor		
	average	numbe	r of				
	D ≦0.1	Ignor	e				
3. Dimming spot \	0.1 < D ≤0.15						
Lighting spot \	0.15< D ≤0.2				Minor		
Dust	0.2 < D	0					
	beyond A.A.	lgnor or + short diam					
	D=(long diameter + short diameter)/2. Pixel off is not allowed.						
	. Die en le net an						

10.3 WARRANTY POLICY

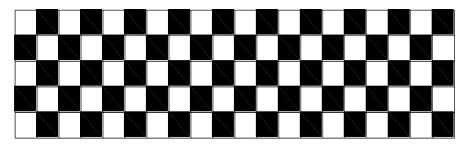
We will provide one-year warranty for the products only if under specification operating conditions.

If there are functional defects found during the period of warranty, the defective products would be replaced on a one-to-one basis.

We would not be responsible for any direct/indirect liabilities consequential to any parties.

10.4 MTBF

10.4.1 .MTBF based on specific test condition is 13K hours.


10.4.2 Test Condition:

10.4.2.1 Supply Voltage: Vcc=14V

10.4.2.2 Luminance: 80cd/m2

10.4.2.3 Operation temperature and humidity: 25 °C and 50%RH

10.4.2.4 Run-Patterns:

10.4.3 Test Criteria:

Luminace has decayed to less than 50% of the initial measured luminance.

11.Reliability

■Content of Reliability Test

NO.	Items.	Specification	Applicable Standard
1	High temp. (Non-operation)	85°C, 240hrs	
2	High temp. (Operation)	70°C, 120hrs	
3	Low temp. (Operation)	-40°C, 120hrs	
4	High temp. / High. humidity (Operation)	65°C, 90%RH, 120hrs	
5	Thermal shock(Non-operation)	-40°C ~85°C (-40°C /30min; transit /3min; 85°C /30min; transit /3min) 1cycle: 66min, 100 cycles.	
6	Vibration	Frequency : 5~50HZ, 0.5G Scan rate : 1 oct/min Time : 2 hrs/axis Test axis : X, Y, Z	

Test and measurement conditions

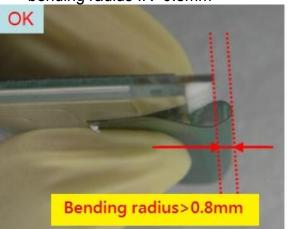
- 1. All measurements shall not be started until the specimens attain to temperature stability.
- 2. All-pixels-on is used as operation test pattern.
- 3. The degradation of Polarizer are ignored for item 1 & 4 & 5.

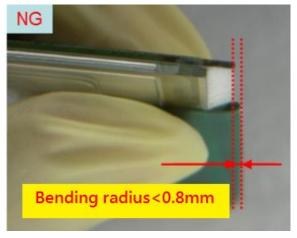
Criteria

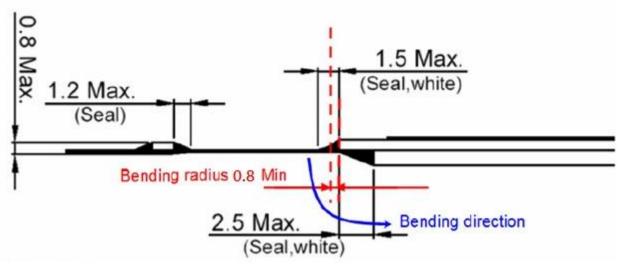
- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: >50% of initial value.
- 4. Current consumption: within ±50% of initial value.

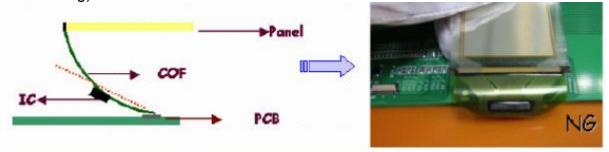
Reliability Test

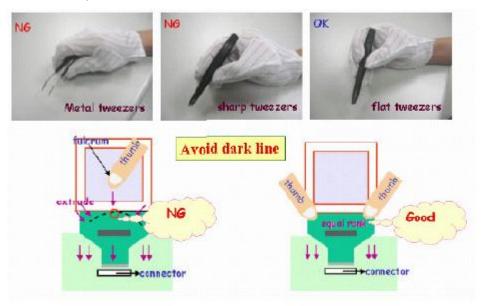
We only guarantees the reliability of the panel under the test conditions and durations listed in the specification, and is not responsible for any test results that are conducted using more stringent conditions and/or with lengthened durations. Also, when the testing the panel in a chamber or oven, make sure they won't produce any condensation on the panel, especially on the electrical leads, before lighting on the panel to see if it passes the test. Also the panel should rest for about an hour at room temperature and pressure before the measurement, as indicated in the specification. Be aware that one should use fresh panel for each of the reliability test items listed in the specification, in other words, don't use the panels that were tested for subsequent tests.


12. Precautions for Handling


- 12.1 When handling the module, wear powder-free antistatic rubber finger cots, and be careful not to bend and twist it.
- 12.2 The OLED module is consisted of glass and film, and it should avoid pressure, strong impact, or being dropped from a height.
- 12.3 The OLED module is an electronic component and is subject to damage caused by Electro Static


Discharge (ESD) and hence normal ESD precautions must be taken when handling it. Also, appropriate ESD protective environment must be administered and maintained in the production line. When handling and assembling the panel, wear an antistatic wrist strap with the alligator clip attached to the ground to prevent ESD damage on the panel. Also, ground the tools being used for panel assembly and make sure the working environment is not too dry to cause ESD problems. (See the photos below).


12.4 Please do not bend the film near the substrate glass.(this could cause film peeling and COF damage) and the peeling strength about 600g/cm, the bending <20times and the bending radius :R>0.8mm



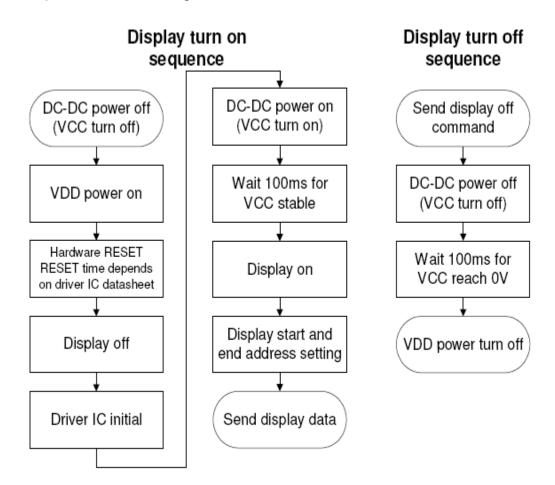
12.5 Avoid bending the film at IC bonding area.(>1.5mm)(this could damage the ILB bonding)

12.6 Use both thumbs to insert COF into the connector when assembling the panel. See the photo on the far right below for correct insertion of the film into the connector (one-handed insertion exerts uneven force on the film and could cause its breakage, photo on the left)

12.7 Do not wipe the pin of film with the dry or hard materials that will damage the surface. When cleaning the display surface, use soft cloth solvent and wipe gently (Recommend solvent: IPA, alcohol), and do not wipe the display with dry or hard materials that will damage the polarizer surface and do not use the solvent like: Water, Acetone, Aromatic

13. Precautions for Electrical

13.1. Design using the settings in the specification


It is extremely important to design and operate the panel using the settings listed in the specification. This includes voltage, current, frame rate, duty cycle... etc. Operation of the OLED outside the specified range in the specification should be entirely avoided to ensure proper operation of the OLED.

13.2. Maximum Ratings

To ensure proper operation of the panel, never design the panel with parameters running over the maximum ratings listed in the specification. Also the logic voltages such as VIL and VIH have to be within the specified range in the specification to prevent any improper operation of the panel.

13.3 Power on/off procedure

Any operation that does not comply with the procedure could cause permanent damage of the IC and should be avoided. When the logic power is not on, do not activate any input signal. Abrupt shutdown of power to the module, while the OLED panel is on, could cause OLED panel malfunctioning.

13.4 Power savings

To save power consumption of the OLED, one can use partial display or sleep mode when the panel is not fully activated. Also, if possible, make maximum use of black background to save power. The OLED is a self-luminous device, and a particular pixel cluster or image can be lit on via software control, so power savings can be achieved by partial display or dimming down the luminance. Depending on the application, the user can choose among Ultra Bright Mode, Normal Operation Mode, and Sleeping Mode.

The power consumption is almost in direct proportion to the brightness of the panel, and also

in direct proportion to the number of pixels lit on the panel, so the customer can save the power by the use of black background and Sleeping Mode. One benefit from using these design schemes is the extension of the OLED lifetime.

13.5 Residual Image (Image Sticking)

The OLED is a self-emissive device. As with other self-emissive device or displays consisting of self-emissive pixels, when a static image frozen for a long period of time is changed to another one with all-pixels-on background, residual image or image sticking is noticed by the human eye. Image sticking is due to the luminance difference or contrast between the pixels that were previously turned on and the pixels that are newly turned on. The time when image sticking happens depends on the luminance decay curve of the display. The slower the decay, the less prominent the image sticking is. It is strongly recommended that the user employ the following three strategies to minimize image sticking

- 13.5.1Employ image scrolling or animation to even out the lit-on time of each and every pixel on the display, also could use sleeping mode for reduced the residual image and extend the power capacity.
- 13.5.2Minimize the use of all-pixels-on or full white background in their application because when the panel is turned on full white, the image sticking from previously shown patterns is the most revealing. Black background is the best for power savings, greatest visibility, eye appealing, and dazzling displays
- 13.5.3If in the reliability test when a static logo is used, change the pattern into its inverse (i.e., turn off the while pixels and turn on the previously unlit pixels) and freeze the inverse pattern as long as the original logo is used, so every pixel on the panel can be lit on for about the same time to minimize image sticking, caused by the differential turn-on time between the original and its reverse patterns

14. Precautions for Storage

Although the storage conditions and guarantee period are indicated in the specification, it is advisable to store the packed cartons or packages at $23^{\circ}C\pm5^{\circ}C$,55%±10%RH, Do not store the OLED module under direct sunlight or UV light and for best panel performance, unpack the cartons and start the production with the panels within one months after the reception of them.